739 research outputs found

    Pairing correlations beyond the mean field

    Full text link
    We discuss dynamical pairing correlations in the context of configuration mixing of projected self-consistent mean-field states, and the origin of a divergence that might appear when such calculations are done using an energy functional in the spirit of a naive generalized density functional theory.Comment: Proceedings of the XIII Nuclear Physics Workshop ``Maria and Pierre Curie'' on ``Pairing and beyond - 50 years of the BCS model'', held at Kazimierz Dolny, Poland, September 27 - October 1, 2006. Int. J. Mod. Phys. E, in prin

    Fine structure of alpha decay in odd nuclei

    Get PDF
    Using an alpha decay level scheme, an explanation for the fine structure in odd nuclei is evidenced by taking into account the radial and rotational couplings between the unpaired nucleon and the core of the decaying system. It is stated that the experimental behavior of the alpha decay fine structure phenomenon is directed by the dynamical characteristics of the system.Comment: 8 pages, 3 figures, REVTex, submitted to Physical Review

    Non-Markovian effect on the quantum discord

    Full text link
    We study the non-Markovian effect on the dynamics of the quantum discord by exactly solving a model consisting of two independent qubits subject to two zero-temperature non-Markovian reservoirs, respectively. Considering the two qubits initially prepared in Bell-like or extended Werner-like states, we show that there is no occurrence of the sudden death, but only instantaneous disappearance of the quantum discord at some time points, in comparison to the entanglement sudden death in the same range of the parameters of interest. It implies that the quantum discord is more useful than the entanglement to describe quantum correlation involved in quantum systems.Comment: 5 pages, 5 figure

    Photodegradation of secondary organic aerosol generated from limonene oxidation by ozone studied with chemical ionization mass spectrometry

    Get PDF
    Photodegradation of secondary organic aerosol (SOA) prepared by ozone-initiated oxidation of D-limonene is studied with an action spectroscopy approach, which relies on detection of volatile photoproducts with chemical ionization mass-spectrometry as a function of the UV irradiation wavelength. Efficient photodegradation is observed for a broad range of ozone (0.1–300 ppm) and D-limonene (0.02–3 ppm) concentrations used in the preparation of SOA. The observed photoproducts are dominated by oxygenated C1-C3 compounds such as methanol, formic acid, acetaldehyde, acetic acid, and acetone. The irradiation wavelength dependence of the combined yield of the photoproducts closely tracks the absorption spectrum of the SOA material suggesting that photodegradation is not limited to the UV wavelengths. Kinetic simulations suggest that RO<sub>2</sub>+HO<sub>2</sub>/RO<sub>2</sub> reactions represent the dominant route to photochemically active carbonyl and peroxide species in the limonene SOA prepared in these experiments. Similar photodegradation processes are likely to occur in realistic SOA produced by OH- or O<sub>3</sub>-initiated oxidation of biogenic volatile organic compounds in clean air

    NUCLEAR STRUCTURE CALCULATONS FOR DEFORMED NUCLEI

    Get PDF

    A Complexity View of Rainfall

    Full text link
    We show that rain events are analogous to a variety of nonequilibrium relaxation processes in Nature such as earthquakes and avalanches. Analysis of high-resolution rain data reveals that power laws describe the number of rain events versus size and number of droughts versus duration. In addition, the accumulated water column displays scale-less fluctuations. These statistical properties are the fingerprints of a self-organized critical process and may serve as a benchmark for models of precipitation and atmospheric processes.Comment: 4 pages, 5 figure

    Review of SIS Experimental Results on Strangeness

    Full text link
    >A review of meson emission in heavy ion collisions at incident energies around 1 -- 2 AA\cdotGeV is presented. It is shown how the shape of the spectra and the various particle yields vary with system size, with centrality and with incident energy. A statistical model assuming thermal and chemical equilibrium and exact strangeness conservation (i.e. strangeness conservation per collision) explains most of the observed features. Emphasis is put onto the study of K+K^+ and KK^- emission. In the framework of this statistical model it is shown that the experimentally observed equality of K+K^+ and KK^- rates at threshold corrected energies ssth\sqrt{s} - \sqrt{s_{th}} is due to a crossing of two excitation functions. Furthermore, the independence of the K+K^+ to KK^- ratio on the number of participating nucleons observed between 1 and 10 AA\cdotGeV is consistent with this model. The observed flow effects are beyond the scope of this model.Comment: 10 pages, 9 figures, Strangeness 2000, V International Conference on Strangeness in Quark Matter, July, 2000, Berkeley, Californi

    Implementation of quantum gates and preparation of entangled states in cavity QED with cold trapped ions

    Get PDF
    We propose a scheme to perform basic gates of quantum computing and prepare entangled states in a system with cold trapped ions located in a single mode optical cavity. General quantum computing can be made with both motional state of the trapped ion and cavity state being qubits. We can also generate different kinds of entangled states in such a system without state reduction, and can transfer quantum states from the ion in one trap to the ion in another trap. Experimental requirement for achieving our scheme is discussed.Comment: To appear in J. Opt.

    Evidence for a Soft Nuclear Equation-of-State from Kaon Production in Heavy Ion Collisions

    Full text link
    The production of pions and kaons has been measured in Au+Au collisions at beam energies from 0.6 to 1.5 AGeV with the Kaon Spectrometer at SIS/GSI. The K+ meson multiplicity per nucleon is enhanced in Au+Au collisions by factors up to 6 relative to C+C reactions whereas the corresponding pion ratio is reduced. The ratio of the K+ meson excitation functions for Au+Au and C+C collisions increases with decreasing beam energy. This behavior is expected for a soft nuclear equation-of-state.Comment: 14 pages, 2 figures, accepted for publication in Phys. Rev. Let

    Production of Charged Pions, Kaons and Antikaons in Relativistic C+C and C+Au Collisions

    Full text link
    Production cross sections of charged pions, kaons and antikaons have been measured in C+C and C+Au collisions at beam energies of 1.0 and 1.8 AGeV for different polar emission angles. The kaon and antikaon energy spectra can be described by Boltzmann distributions whereas the pion spectra exhibit an additional enhancement at low energies. The pion multiplicity per participating nucleon M(pi+)/A_part is a factor of about 3 smaller in C+Au than in C+C collisions at 1.0 AGeV whereas it differs only little for the C and the Au target at a beam energy of 1.8 AGeV. The K+ multiplicities per participating nucleon M(K+)/A_part are independent of the target size at 1 AGeV and at 1.8 AGeV. The K- multiplicity per participating nucleon M(K-)/A_part is reduced by a factor of about 2 in C+Au as compared to C+C collisions at 1.8 AGeV. This effect might be caused by the absorption of antikaons in the heavy target nucleus. Transport model calculations underestimate the K-/K+ ratio for C+C collisions at 1.8 AGeV by a factor of about 4 if in-medium modifications of K mesons are neglected.Comment: 19 pages, 14 figures, accepted for publication in Eur. Phys. J.
    corecore