2,119 research outputs found

    Therapeutic Potential of Semi-Mature Dendritic Cells for Tolerance Induction

    Get PDF
    Dendritic cells (DCs) are major players in the control of adaptive tolerance and immunity. Therefore, their specific generation and adoptive transfer into patients or their in vivo targeting is attractive for clinical applications. While injections of mature immunogenic DCs are tested in clinical trials, tolerogenic DCs still are awaiting this step. Besides the tolerogenic potential of immature DCs, also semi-mature DCs can show tolerogenic activity but both types also bear unfavorable features. Optimal tolerogenic DCs, their molecular tool bar, and their use for specific diseases still have to be defined. Here, the usefulness of in vitro generated and adoptively transferred semi-mature DCs for tolerance induction is outlined. The in vivo targeting of semi-mature DCs as represented by steady state migratory DCs are discussed for treatment of autoimmune diseases and allergies. First clinical trials with transcutaneous allergen application may point to their therapeutic use in the future

    Role of Dendritic Cell Maturity/Costimulation for Generation, Homeostasis, and Suppressive Activity of Regulatory T Cells

    Get PDF
    Tolerogenicity of dendritic cells (DCs) has initially been attributed exclusively to immature/resting stages, while mature/activated DCs were considered strictly immunogenic. Later, all different subsets among the myeloid/conventional DCs and plasmacytoid DCs have been shown to bear tolerogenic potential, so that tolerogenicity could not be attributed to a specific subset. Immunosuppressive treatments of immature DC subsets could prevent re-programming into mature DCs or upregulated inhibitory surface markers or cytokines. Furthermore, the different T cell tolerance mechanisms anergy, deletion, immune deviation, and suppression require different quantities and qualities of costimulation by DCs. Since expansion of regulatory T cells (Tregs) has been shown to be promoted best by fully mature DCs the role of CD80/B7-1 and CD86/B7-2 as major costimulatory molecules for Treg biology is under debate. In this review, we discuss the role of these and other costimulatory molecules on myeloid DCs and their ligands CD28 and CD152/CTLA-4 on Tregs for peripheral conversion from naive CD4+ T cells into the major subsets of Foxp3+ Tregs and Foxp3− IL-10+ regulatory type-1 T cells (Tr1) or Tr1-like cells and their role for peripheral maintenance in the steady state and after activation

    Prevention and Treatment of Experimental Autoimmune Encephalomyelitis by Soluble CD83

    Get PDF
    CD83 is up-regulated on the surface of dendritic cells (DCs) during maturation and has been widely used as a marker for mature DCs. Recently, we reported the recombinant expression of the extracellular immunoglobulin domain of human CD83 (hCD83ext). Using this soluble form of CD83, allogeneic as well as specific cytotoxic T lymphocyte proliferation could be blocked in vitro. Here we report the functional analysis of soluble CD83 in vivo, using murine experimental autoimmune encephalomyelitis (EAE) as a model. Strikingly, only three injections of soluble CD83 prevented the paralysis associated with EAE almost completely. In addition, even when the EAE was induced a second time, CD83-treated mice were protected, indicating a long-lasting suppressive effect. Furthermore, soluble CD83 strongly reduced the paralysis in different therapeutic settings. Most important, even when the treatment was delayed until the disease symptoms were fully established, soluble CD83 clearly reduced the paralyses. In addition, also when EAE was induced a second time, soluble CD83-treated animals showed reduced disease symptoms. Finally, hCD83ext treatment almost completely reduced leukocyte infiltration in the brain and in the spinal cord. In summary, this work strongly supports an immunosuppressive role of soluble CD83, thereby indicating its therapeutic potential in the regulation of immune disorders in vivo

    Sequential induction of effector function, tissue migration and cell death during polyclonal activation of mouse regulatory T-cells

    Get PDF
    The ability of CD4+Foxp3+ regulatory T-cells (Treg) to produce interleukin (IL)-10 is important for the limitation of inflammation at environmental interfaces like colon or lung. Under steady state conditions, however, few Tregs produce IL-10 ex vivo. To investigate the origin and fate of IL-10 producing Tregs we used a superagonistic mouse anti-mouse CD28 mAb (CD28SA) for polyclonal in vivo stimulation of Tregs, which not only led to their numeric expansion but also to a dramatic increase in IL-10 production. IL-10 secreting Tregs strongly upregulated surface receptors associated with suppressive function as compared to non-producing Tregs. Furthermore, polyclonally expanding Tregs shifted their migration receptor pattern after activation from a CCR7+CCR52 lymph node-seeking to a CCR72CCR5+ inflammationseeking phenotype, explaining the preferential recruitment of IL-10 producers to sites of ongoing immune responses. Finally, we observed that IL-10 producing Tregs from CD28SA stimulated mice were more apoptosis-prone in vitro than their IL-10 negative counterparts. These findings support a model where prolonged activation of Tregs results in terminal differentiation towards an IL-10 producing effector phenotype associated with a limited lifespan, implicating built-in termination of immunosuppression

    Conversion of Anergic T Cells Into Foxp3^- IL-10+^+ Regulatory T Cells by a Second Antigen Stimulus In Vivo

    Get PDF
    T cell anergy is a common mechanism of T cell tolerance. However, although anergic T cells are retained for longer time periods in their hosts, they remain functionally passive. Here, we describe the induction of anergic CD4+^+ T cells in vivo by intravenous application of high doses of antigen and their subsequent conversion into suppressive Foxp3^- IL-10+^+ Tr1 cells but not Foxp3+^+ Tregs. We describe the kinetics of up-regulation of several memory-, anergy- and suppression-related markers such as CD44, CD73, FR4, CD25, CD28, PD-1, Egr-2, Foxp3 and CTLA-4 in this process. The conversion into suppressive Tr1 cells correlates with the transient intracellular CTLA-4 expression and required the restimulation of anergic cells in a short-term time window. Restimulation after longer time periods, when CTLA-4 is down-regulated again retains the anergic state but does not lead to the induction of suppressor function. Our data require further functional investigations but at this stage may suggest a role for anergic T cells as a circulating pool of passive cells that may be re-activated into Tr1 cells upon short-term restimulation with high and systemic doses of antigen. It is tentative to speculate that such a scenario may represent cases of allergen responses in non-allergic individuals

    Interleukin-3Rα+ Myeloid Dendritic Cells and Mast Cells Develop Simultaneously from Different Bone Marrow Precursors in Cultures with Interleukin-3

    Get PDF
    The distinct developmental routes of dendritic cells and mast cells from murine bone marrow cultures with interleukin-3 are unclear. We found that short-term bone marrow cultures with interleukin-3 after 8–10 d consist of about 10%–30% dendritic cells and 70%–90% mast cell precursors, and only after 4–6 wk do homogeneous populations of mast cells emerge. Phenotypical and functional analysis of interleukin-3/dendritic cells revealed a high similarity with myeloid dendritic cells generated with granulocyte-macrophage colony stimulating factor in the expression of myeloid dendritic cell markers (CD11c+ B220– CD8α– CD11b+), major histocompatibility complex II and costimulatory molecules, endocytosis, maturation potential, interleukin-12 production, and T cell priming. Interleukin-3/dendritic cells expressed higher levels of interleukin-3 receptor, however. To dissect the interleukin-3/dendritic cell and mast cell development, we sorted fresh bone marrow cells into six subsets by the antibodies ER-MP12 (CD31) and ER-MP20 (Ly-6C). Both interelukin-3/dendritic cells and granulocyte-macrophage colony stimulating factor/dendritic cells develop from the same bone marrow populations, including the ER-MP12neg, ER-MP20high bone marrow monocytes. In contrast, mast cells only developed from ER-MP12int+high, ER-MP20neg bone marrow cell subsets, indicating that different precursors exist for interleukin-3/dendritic cells and mast cells. Established mast cell cultures could not be converted to dendritic cells or stimulated to express major histocompatibility complex II molecules in vitro or home to lymph node T cell areas in vivo. In summary, we show that dendritic cells generated from bone marrow precursors with interleukin-3 are clearly myeloid and develop via a different pathway compared to bone marrow mast cells

    The Conduit System Transports Soluble Antigens from the Afferent Lymph to Resident Dendritic Cells in the T Cell Area of the Lymph Node

    Get PDF
    AbstractResident dendritic cells (DC) within the T cell area of the lymph node take up soluble antigens that enter via the afferent lymphatics before antigen carrying DC arrive from the periphery. The reticular network within the lymph node is a conduit system forming the infrastructure for the fast delivery of soluble substances from the afferent lymph to the lumen of high endothelial venules (HEVs). Using high-resolution light microscopy and 3D reconstruction, we show here that these conduits are unique basement membrane-like structures ensheathed by fibroblastic reticular cells with occasional resident DC embedded within this cell layer. Conduit-associated DC are capable of taking up and processing soluble antigens transported within the conduits, whereas immigrated mature DC occur remote from the reticular fibers. The conduit system is, therefore, not a closed compartment that shuttles substances through the lymph node but represents the morphological equivalent to the filtering function of the lymph node

    Carrier Recombination in Highly Uniform and Phase-Pure GaAs/(Al,Ga)As Core/Shell Nanowire Arrays on Si(111): Mott Transition and Internal Quantum Efficiency

    Full text link
    GaAs-based nanowires are among the most promising candidates for realizing a monolithical integration of III-V optoelectronics on the Si platform. To realize their full potential for applications as light absorbers and emitters, it is crucial to understand their interaction with light governing the absorption and extraction efficiency, as well as the carrier recombination dynamics determining the radiative efficiency. Here, we study the spontaneous emission of zincblende GaAs/(Al,Ga)As core/shell nanowire arrays by μ\mu-photoluminescence spectroscopy. These ordered arrays are synthesized on patterned Si(111) substrates using molecular beam epitaxy, and exhibit an exceptionally low degree of polytypism for interwire separations exceeding a critical value. We record emission spectra over more than five orders of excitation density for both steady-state and pulsed excitation to identify the nature of the recombination channels. An abrupt Mott transition from excitonic to electron-hole-plasma recombination is observed, and the corresponding Mott density is derived. Combining these experiments with simulations and additional direct measurements of the external quantum efficiency using a perfect diffuse reflector as reference, we are able to extract the internal quantum efficiency as a function of carrier density and temperature as well as the extraction efficiency of the nanowire array. The results vividly document the high potential of GaAs/(Al,Ga)As core/shell nanowires for efficient light emitters integrated on the Si platform. Furthermore, the methodology established in this work can be applied to nanowires of any other materials system of interest for optoelectronic applications
    corecore