67 research outputs found

    Geometric Aspects of Ambrosetti-Prodi operators with Lipschitz nonlinearities

    Full text link
    For Dirichlet boundary conditions on a bounded domain, what happens to the critical set of the Ambrosetti-Prodi operator if the nonlinearity is only a Lipschitz map? It turns out that many properties which hold in the smooth case are preserved, despite of the fact that the operator is not even differentiable at some points. In particular, a global Lyapunov-Schmidt decomposition of great convenience for numerical inversion is still available

    A questionnaire for determining prevalence of diabetes related foot disease (Q-DFD): construction and validation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Community based prevalence for diabetes related foot disease (DRFD) has been poorly quantified in Australian populations. The aim of this study was to develop and validate a survey tool to facilitate collection of community based prevalence data for individuals with DRFD via telephone interview.</p> <p>Methods</p> <p>Agreed components of DRFD were identified through an electronic literature search. Expert feedback and feedback from a population based construction sample were sought on the initial draft. Survey reliability was tested using a cohort recruited through a general practice, a hospital outpatient clinic and an outpatient podiatry clinic. Level of agreement between survey findings and either medical record or clinical assessment was evaluated.</p> <p>Results</p> <p>The Questionnaire for Diabetes Related Foot Disease (Q-DFD) comprised 12 questions aimed at determining presence of peripheral sensory neuropathy (PN) and peripheral vascular disease (PVD), based on self report of symptoms and/or clinical history, and self report of foot ulceration, amputation and foot deformity. Survey results for 38 from 46 participants demonstrated agreement with either clinical assessment or medical record (kappa 0.65, sensitivity 89.0%, and specificity 77.8%). Correlation for individual survey components was moderate to excellent. Inter and intrarater reliability and test re-test reliability was moderate to high for all survey domains.</p> <p>Conclusion</p> <p>The development of the Q-DFD provides an opportunity for ongoing collection of prevalence estimates for DRFD across Australia.</p

    Primed T Cell Responses to Chemokines Are Regulated by the Immunoglobulin-Like Molecule CD31

    Get PDF
    CD31, an immunoglobulin-like molecule expressed by leukocytes and endothelial cells, is thought to contribute to the physiological regulation T cell homeostasis due to the presence of two immunotyrosine-based inhibitory motifs in its cytoplasmic tail. Indeed, loss of CD31 expression leads to uncontrolled T cell-mediated inflammation in a variety of experimental models of disease and certain CD31 polymorphisms correlate with increased disease severity in human graft-versus-host disease and atherosclerosis. The molecular mechanisms underlying CD31-mediated regulation of T cell responses have not yet been clarified. We here show that CD31-mediated signals attenuate T cell chemokinesis both in vitro and in vivo. This effect selectively affects activated/memory T lymphocytes, in which CD31 is clustered on the cell membrane where it segregates to the leading edge. We provide evidence that this molecular segregation, which does not occur in naïve T lymphocytes, might lead to cis-CD31 engagement on the same membrane and subsequent interference with the chemokine-induced PI3K/Akt signalling pathway. We propose that CD31-mediated modulation of memory T cell chemokinesis is a key mechanism by which this molecule contributes to the homeostatic regulation of effector T cell immunity

    A novel locus (CORD12) for autosomal dominant cone-rod dystrophy on chromosome 2q24.2-2q33.1

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rod-cone dystrophy, also known as retinitis pigmentosa (RP), and cone-rod dystrophy (CRD) are degenerative retinal dystrophies leading to blindness. To identify new genes responsible for these diseases, we have studied one large non consanguineous French family with autosomal dominant (ad) CRD.</p> <p>Methods</p> <p>Family members underwent detailed ophthalmological examination. Linkage analysis using microsatellite markers and a whole-genome SNP analysis with the use of Affymetrix 250 K SNP chips were performed. Five candidate genes within the candidate region were screened for mutations by direct sequencing.</p> <p>Results</p> <p>We first excluded the involvement of known adRP and adCRD genes in the family by genotyping and linkage analysis. Then, we undertook a whole-genome scan on 22 individuals in the family. The analysis revealed a 41.3-Mb locus on position 2q24.2-2q33.1. This locus was confirmed by linkage analysis with specific markers of this region. The maximum LOD score was 2.86 at θ = 0 for this locus. Five candidate genes, <it>CERKL</it>, <it>BBS5, KLHL23, NEUROD1</it>, and <it>SF3B1 </it>within this locus, were not mutated.</p> <p>Conclusion</p> <p>A novel locus for adCRD, named <it>CORD12</it>, has been mapped to chromosome 2q24.2-2q33.1 in a non consanguineous French family.</p

    Neuropsychological patterns following lesions of the anterior insula in a series of forty neurosurgical patients

    Get PDF
    In the present study we investigated the effects of lesions affecting mainly the anterior insula in a series of 22 patients with lesions in the left hemisphere (LH), and 18 patients with lesions involving the right hemisphere (RH). The site of the lesion was established by performing an overlap of the probabilistic cytoarchitectonic maps of the posterior insula. Here we report the patients\u2019 neuropsychological profile and an analysis of their pre-surgical symptoms. We found that pre-operatory symptoms significantly differed in patients depending on whether the lesion affected the right or left insula and a strict parallelism between the patterns emerged in the pre-surgery symptoms analysis, and the patients\u2019 cognitive profile. In particular, we found that LH patients showed cognitive deficits. By contrast, the RH patients, with the exception of one case showing an impaired performance at the visuo-spatial planning test were within the normal range in performing all the tests. In addition, a sub-group of patients underwent to the post-surgery follow-up examination

    Bordetella Adenylate Cyclase Toxin Mobilizes Its β2 Integrin Receptor into Lipid Rafts to Accomplish Translocation across Target Cell Membrane in Two Steps

    Get PDF
    Bordetella adenylate cyclase toxin (CyaA) binds the αMβ2 integrin (CD11b/CD18, Mac-1, or CR3) of myeloid phagocytes and delivers into their cytosol an adenylate cyclase (AC) enzyme that converts ATP into the key signaling molecule cAMP. We show that penetration of the AC domain across cell membrane proceeds in two steps. It starts by membrane insertion of a toxin ‘translocation intermediate’, which can be ‘locked’ in the membrane by the 3D1 antibody blocking AC domain translocation. Insertion of the ‘intermediate’ permeabilizes cells for influx of extracellular calcium ions and thus activates calpain-mediated cleavage of the talin tether. Recruitment of the integrin-CyaA complex into lipid rafts follows and the cholesterol-rich lipid environment promotes translocation of the AC domain across cell membrane. AC translocation into cells was inhibited upon raft disruption by cholesterol depletion, or when CyaA mobilization into rafts was blocked by inhibition of talin processing. Furthermore, CyaA mutants unable to mobilize calcium into cells failed to relocate into lipid rafts, and failed to translocate the AC domain across cell membrane, unless rescued by Ca2+ influx promoted in trans by ionomycin or another CyaA protein. Hence, by mobilizing calcium ions into phagocytes, the ‘translocation intermediate’ promotes toxin piggybacking on integrin into lipid rafts and enables AC enzyme delivery into host cytosol

    Systems Integration of Biodefense Omics Data for Analysis of Pathogen-Host Interactions and Identification of Potential Targets

    Get PDF
    The NIAID (National Institute for Allergy and Infectious Diseases) Biodefense Proteomics program aims to identify targets for potential vaccines, therapeutics, and diagnostics for agents of concern in bioterrorism, including bacterial, parasitic, and viral pathogens. The program includes seven Proteomics Research Centers, generating diverse types of pathogen-host data, including mass spectrometry, microarray transcriptional profiles, protein interactions, protein structures and biological reagents. The Biodefense Resource Center (www.proteomicsresource.org) has developed a bioinformatics framework, employing a protein-centric approach to integrate and support mining and analysis of the large and heterogeneous data. Underlying this approach is a data warehouse with comprehensive protein + gene identifier and name mappings and annotations extracted from over 100 molecular databases. Value-added annotations are provided for key proteins from experimental findings using controlled vocabulary. The availability of pathogen and host omics data in an integrated framework allows global analysis of the data and comparisons across different experiments and organisms, as illustrated in several case studies presented here. (1) The identification of a hypothetical protein with differential gene and protein expressions in two host systems (mouse macrophage and human HeLa cells) infected by different bacterial (Bacillus anthracis and Salmonella typhimurium) and viral (orthopox) pathogens suggesting that this protein can be prioritized for additional analysis and functional characterization. (2) The analysis of a vaccinia-human protein interaction network supplemented with protein accumulation levels led to the identification of human Keratin, type II cytoskeletal 4 protein as a potential therapeutic target. (3) Comparison of complete genomes from pathogenic variants coupled with experimental information on complete proteomes allowed the identification and prioritization of ten potential diagnostic targets from Bacillus anthracis. The integrative analysis across data sets from multiple centers can reveal potential functional significance and hidden relationships between pathogen and host proteins, thereby providing a systems approach to basic understanding of pathogenicity and target identification

    Membrane Cholesterol Regulates Lysosome-Plasma Membrane Fusion Events and Modulates Trypanosoma cruzi Invasion of Host Cells

    Get PDF
    Trypanosoma cruzi, is the etiological agent of a neglected tropical malady known as Chagas' disease, which affects about 8 million people in Latin America. 30–40% of affected individuals develop a symptomatic chronic infection, with cardiomyopathy being the most prevalent condition. T. cruzi utilizes an interesting strategy for entering cells: T. cruzi enhances intracellular calcium levels, which in turn trigger the exocytosis of lysosomal contents. Lysosomes then donate their membrane for the formation of the parasitophorous vacuole. Membrane rafts, cholesterol-enriched microdomains in the host cell plasma membrane, have also been implicated in T. cruzi invasion process. Since both plasma membrane and lysosomes collaborate in parasite invasion, we decided to study the importance of these membrane domains for lysosomal recruitment and fusion during T. cruzi invasion into host cells. Our results show that drug dependent depletion of plasma membrane cholesterol changes raft organization and induces excessive lysosome exocytosis in the earlier stages of treatment, leading to a depletion of lysosomes near the cell cortex, which in turn compromises T. cruzi invasion. Based on these results, we propose that cholesterol depletion leads to unregulated exocytic events of pre-docked lysosomes, reducing lysosome availability at the cell cortex and consequently compromising T. cruzi infection
    • …
    corecore