39 research outputs found

    Growth and characterization of high quality functional (Ni-Co-Fe) oxides on Ru(0001)

    Get PDF
    esis inédita de la Universidad Complutense de Madrid, Facultad de Ciencias Físicas, Departamento de Física de Materiales, leída el 09-10-2020En óxidos complejos, la competencia entre los grados de libertad de carga, spin y orbital da lugar a fenómenos físicos de interés, tales como el ferromagnetismo, la ferroelectricidad o la multiferroelectricidad. En este campo, los avances conseguidos en su crecimiento permiten sintetizar de forma controlada hetero estructuras de alta calidad de los mismos, a veces controlando las dimensiones hasta al nivel de capas atómicas individuales. Por último, la obtención de propiedades electrónicas concretas en películas ultrafinas de óxidos abre la puerta a nuevas rutas para explorar funcionalidades nanoelectrónicas para diferentes aplicaciones...The competition of charge, spin and orbital degrees of freedom in complex oxides leads to intriguing physical phenomena, including ferromagnetism, ferroelectricity or multiferroelectricity. The advances in the growth of oxides gives rise to the controlled synthesis of high-quality oxide heterostructures with monolayer-precision. Designing electronic properties in ultrathin oxide films and interfaces opens up routes to explore novel nanoelectronic functionalities for applications...Fac. de Ciencias FísicasTRUEunpu

    Generation and Imaging of Magnetoacoustic Waves over Millimeter Distances

    Get PDF
    Using hybrid piezoelectric-magnetic systems we have generated large amplitude magnetization waves mediated by magnetoelasticity with up to 25 degrees variation in the magnetization orientation. We present direct imaging and quantification of both standing and propagating acoustomagnetic waves with different wavelengths, over large distances up to several millimeters in a nickel thin film.The authors acknowledge Jordi Prat of ALBA for his help during experiments. F. M. acknowledges support from the MINECO through Grant No. RYC-2014-16515. F. M., B. C., and R. C. acknowledge support from MINECO through Grants No. SEV-2015-0496 and No. MAT2017- 85232-R. F. M., J. M. H., and N. S. acknowledge funding from MINECO through Grant No. MAT2015-69144-P. We thank Werner Seidel and Sander Rauwerdink from PDI for assistance in the preparation of acoustic delay lines on LiNbO3. L. A. and M. F. acknowledge support from MINECO through RTI2018-095303-B-C53. This project was partially supported by the ALBA in-house research program through Projects No. ALBA-IH2015PEEM and ALBAIH2017PEEM.Peer reviewe

    Tuning the N\'eel temperature in an antiferromagnet: the case of NixCo1-xO microstructures

    Full text link
    We show that it is possible to tune the N\'eel temperature of nickel(II)-cobalt(II) oxide films by changing the Ni to Co ratio. We grow single crystalline micrometric triangular islands with tens of nanometers thickness on a Ru(0001) substrate using high temperature oxygen-assisted molecular beam epitaxy. Composition is controlled by adjusting the deposition rates of Co and Ni. The morphology, shape, crystal structure and composition are determined by low-energy electron microscopy and diffraction, and synchrotron-based x-ray absorption spectromicroscopy. The antiferromagnetic order is observed by x-ray magnetic linear dichroism. Antiferromagnetic domains up to micrometer width are observed

    Magnetic domains in SrFe12O19/Co hard/soft bilayers

    Get PDF
    ESRF (The european Synchrotron) User Meeting 2022, 7 - 9 February, 2022 . -- online meeting . -- https://www.esrf.fr/fr/home/events/conferences/2022/user-meeting-2022.html .-- Youtube access: https://www.youtube.com/playlist?list=PLsWatK2_NAmyYnkC-bXhvT70wsYaTmojqThe nature of the magnetic coupling between a SrFe12O19 particle (hard phase) and a Co layer grown on top (soft phase) has been studied by means of photoemission electron microscopy (PEEM) and spatially-resolved x-ray absorption (XAS) and magnetic circular dichroism (XMCD) at CIRCE, ALBA synchrotron (Spain). Our study reveals the soft metallic overlayer presents an in-plane magnetization despite the strong out-of-plane magnetocrystalline anisotropy of the hard platelet. Thus, the two phases show completely uncorrelated magnetic domain patterns. Micromagnetic simulations seem to indicate the degree of exchange-coupling is low or null, although the conditions for rigid coupling are a priori well met

    Magnetic domains on magnetite islands: from XMCD-PEEM to micromagnetism

    Get PDF
    Oral presentation given at the 13th European Conference on Surface Crystallography and Dynamics, held in Donostia-San Sebastián, Spain, on June 19-21th, 2017.Magnetite nanostructures and thin films have been grown in spintronic devices such as spin valves in order to take advantage of the high Curie temperature, stability, and predicted half-metal character. However, thin films present magnetic properties which are rather different from the properties of bulk magnetite: high coercive fields, high saturation fields, out-of-plane magnetization, superparamagnetism in ultrathin films, or unexpected easy-axes. An explanation for these effects are growth defects, among which antiphase domain boundaries (APBs) are the best example. In the present work, we study the magnetic domains on flat single-crystal magnetite and other mixed spinels grown on Ru(0001) by molecular beam epitaxy [1,2]. As each island grows from a single nucleus, there are expected to be free of APBs. We have measured with nanometer-resolution the 3D magnetization of the islands by combining x-ray magnetic circular dichroism images acquired in a photoemission electron microscope at different azimuthal angles. The 3D magnetization maps have been used as the initial magnetization configuration for micromagnetic simulations of islands with the same lateral and vertical dimensions as the experimental ones. The Mumax3 software has been used to perform the micromagnetic simulations. By comparing the evolution of the micromagnetic simulations with the experimental behavior of the islands after annealing, we seek to validate the material parameters that define their magnetic behavior and to identify cases where defects or other effects play a role

    Tuning the Néel temperature in an antiferromagnet: the case of NixCo1−xO microstructures

    Get PDF
    We show that it is possible to tune the Néel temperature of nickel(II)-cobalt(II) oxide films by changing the Ni to Co ratio. We grow single crystalline micrometric triangular islands with tens of nanometers thickness on a Ru(0001) substrate using high temperature oxygen-assisted molecular beam epitaxy. Composition is controlled by adjusting the deposition rates of Co and Ni. The morphology, shape, crystal structure and composition are determined by low-energy electron microscopy and diffraction, and synchrotron-based x-ray absorption spectromicroscopy. The antiferromagnetic order is observed by x-ray magnetic linear dichroism. Antiferromagnetic domains up to micrometer width are observedThis work is supported by the Spanish Agencia Estatal de Investigación (MCIU/AEI/FEDER, EU)) through Projects Nos MAT2015-64110-C2-1-P, MAT2015-64110-C2-2-P, RTI2018-095303-B-C51, and RTI2018-095303-B-C53, by the European Commission through Project H2020 No. 720853 (Amphibian) and by the Comunidad de Madrid through Project. NANOMAGCOST-CM P2018/NMT-4321. These experiments were performed at the CIRCE beamline of the ALBA Synchrotron Light Facility. A.M. acknowledges funding via a CSIC-Alba agreemen

    Structure and magnetism of ultrathin nickel-iron oxides grown on Ru(0001) by high-temperature oxygen-assisted molecular beam epitaxy

    Get PDF
    We demonstrate the preparation of ultrathin Fe-rich nickel ferrite (NFO) islands on a metal substrate. Their nucleation and growth are followed in situ by low-energy electron microscopy (LEEM). A comprehensive characterization is performed combining LEEM for structural characterization and PEEM (PhotoEmission Electron Microscopy) with synchrotron radiation for chemical and magnetic analysis via X-ray Absorption Spectroscopy and X-ray Magnetic Circular Dichroism (XAS-PEEM and XMCD-PEEM, respectively). The growth by oxygen-assisted molecular beam epitaxy takes place in two stages. First, islands with the rocksalt structure nucleate and grow until they completely cover the substrate surface. Later three-dimensional islands of spinel phase grow on top of the wetting layer. Only the spinel islands show ferromagnetic contrast, with the same domains being observed in the Fe and Ni XMCD images. The estimated magnetic moments of Fe and Ni close to the islands surface indicate a possible role of the bi-phase reconstruction. A significant out-of-plane magnetization component was detected by means of XMCD-PEEM vector maps

    Magneto-Acoustic Waves in antiferromagnetic CuMnAs excited by Surface Acoustic Waves

    Full text link
    Magnetoelastic effects in antiferromagnetic CuMnAs are investigated by applying dynamic strain in the 0.01% range through surface acoustic waves in the GaAs substrate. The magnetic state of the CuMnAs/GaAs is characterized by a multitude of submicron-sized domains which we image by x-ray magnetic linear dichroism combined with photoemission electron microscopy. Within the explored strain range, CuMnAs shows magnetoelastic effects in the form of N\'eel vector waves with micrometer wavelength, which corresponds to an averaged overall spin-axis rotation up to 2.4 deg driven by the time-dependent strain from the surface acoustic wave. Measurements at different temperatures indicate a reduction of the wave amplitude when lowering the temperature. However, no domain wall motion has been detected on the nanosecond timescal

    Strontium hexaferrite platelets: a comprehensive soft X-ray absorption and Mössbauer spectroscopy study

    Get PDF
    IBERMÖSS-2019, Bilbao, 30-31 may 2019. --https://www.ehu.eus/es/web/ibermossmeetingStrontium ferrite (SFO, SrFe12O19) is a ferrite employed for permanent magnets due to its high magnetocrystalline anisotropy. Since its discovery in the mid-20th century, this hexagonal ferrite has become an increasingly important material both commercially and technologically, finding a variety of uses and applications. Its structure can be considered a sequence of alternating spinel (S) and rocksalt (R) blocks. All the iron cations are in the Fe3+ oxidation state and it has a ferrimagnetic configuration with five different cationic environments for the iron (three octahedral sites, a tetraedrical site and a bipiramidal site)[1,2]. We have studied the properties of SrFe 12O19 in the shape of platelets, up to several micrometers in width, and tens of nanometers thick, synthesized by a hydrothermal method. We have characterized the structural and magnetic properties of these platelets by Mössbauer spectroscopy, x-ray transmission microscopy (TMX), transmission electron microscopy (TEM), x-ray diffraction (XRD), vibrating-sample magnetometry (VSM), x-ray absorption spectroscopy (XAS), x-ray circular magnetic dichroism (XMCD) and photoemission electron microscopy (PEEM). To the best of our knowledge this is the first time that the x-ray absorption spectra at the Fe L 2,3 edges of this material in its pure form have been reported. The Mössbauer results recorded from these platelets both in the electron detection and transmission modes have helped to understand the iron magnetic moments determined by XMCD (Fig.1). The experimental results have been complemented with multiplet calculations aimed at reproducing the observed XAS and XMCD spectra at the Fe L 2,3 absorption edge, and by density functional theory (DFT) calculations to reproduce the oxygen K- absorption edge. Finally the domain pattern measured in remanence is in good agreement with micromagnetic simulations [3]
    corecore