3,901 research outputs found

    Casimir effect in a weak gravitational field and the spacetime index of refraction

    Full text link
    In a recent paper [arXiv:0904.2904] using a conjecture it is shown how one can calculate the effect of a weak stationary gravitational field on vacuum energy in the context of Casimir effect in an external gravitational field treated in 1+3 formulation of spacetime decomposition.. In this article, employing quntum field theory in curved spacetime, we explicitly calculate the effect of a weak static gravitational field on virtual massless scalar particles in a Casimir apparatus. It is shown that, as expected from the proposed conjecture, both the frequency and renormalized energy of the virtual scalar field are affected by the gravitational field through its index of refraction. This could be taken as a strong evidence in favour of the proposed conjecture. Generalizations to weak {\it stationary} spacetimes and virtual photons are also discussed.Comment: 11 pages, RevTex, typos corrected (combined with arXiv:0904.2904 published in PRD

    NDKNDK, KˉDN\bar{K} DN and NDDˉND\bar{D} molecules

    Full text link
    We investigate theoretically baryon systems made of three hadrons which contain one nucleon and one D meson, and in addition another meson, Dˉ,K\bar{D}, K or Kˉ\bar{K}. The systems are studied using the Fixed Center Approximation to the Faddeev equations. The study is made assuming scattering of a KK or a Kˉ\bar{K} on a DNDN cluster, which is known to generate the Λc(2595)\Lambda_c(2595), or the scattering of a nucleon on the DDˉD\bar{D} cluster, which has been shown to generate a hidden charm resonance named X(3700). We also investigate the configuration of scattering of NN on the KDKD cluster, which is known to generate the Ds0(2317)D_{s0}^*(2317). In all cases we find bound states, with the NDKNDK system, of exotic nature, more bound than the KˉDN\bar{K} DN.Comment: 9 figure

    The s-wave pion-nucleus optical potential

    Get PDF
    We calculate the s-wave part of the pion-nucleus optical potential using a unitarized chiral approach that has been previously used to simultaneously describe pionic hydrogen and deuterium data as well as low energy pi N scattering in the vacuum. This energy dependent model allows for additional isoscalar parts in the potential from multiple rescattering. We consider Pauli blocking and pion polarization in an asymmetric nuclear matter environment. Also, higher order corrections of the pi N amplitude are included. The model can accommodate the repulsion required by phenomenological fits, though the theoretical uncertainties are bigger than previously thought. At the same time, we also find an enhancement of the isovector part compatible with empirical determinations.Comment: 31 pages, 27 figure

    An evaluation resource for geographic information retrieval

    Get PDF
    In this paper we present an evaluation resource for geographic information retrieval developed within the Cross Language Evaluation Forum (CLEF). The GeoCLEF track is dedicated to the evaluation of geographic information retrieval systems. The resource encompasses more than 600,000 documents, 75 topics so far, and more than 100,000 relevance judgments for these topics. Geographic information retrieval requires an evaluation resource which represents realistic information needs and which is geographically challenging. Some experimental results and analysis are reported

    Entanglement in bosonic systems

    Full text link
    We present a technique to resolve a Gaussian density matrix and its time evolution through known expectation values in position and momentum. Further we find the full spectrum of this density matrix and apply the technique to a chain of harmonic oscillators to find agreement with conformal field theory in this domain. We also observe that a non-conformal state has a divergent entanglement entropy.Comment: 7 pages, 6 figure

    One-Nucleon Effective Generators of the Poincare Group derived from a Field Theory: Mass Renormalization

    Get PDF
    We start from a Lagrangian describing scalar "nucleons" and mesons which interact through a simple vertex. Okubo's method of unitary transformation is used to describe a single nucleon dressed by its meson cloud. We find an expression for the physical mass of the nucleon being correct up to second order in the coupling constant. It is then verified that this result is the same as the corresponding expression found by Feynman techniques. Finally we also express the three boost operators in terms of the physical nucleon mass. Doing so we find expressions for all the ten generators of Poincar\'e transformations for the system of one single dressed nucleon.Comment: 19 pages, no figure

    On adaptive control of Markov processes

    Get PDF

    Thermodynamics of a model for RNA folding

    Get PDF
    We analyze the thermodynamic properties of a simplified model for folded RNA molecules recently studied by G. Vernizzi, H. Orland, A. Zee (in {\it Phys. Rev. Lett.} {\bf 94} (2005) 168103). The model consists of a chain of one-flavor base molecules with a flexible backbone and all possible pairing interactions equally allowed. The spatial pseudoknot structure of the model can be efficiently studied by introducing a N×NN \times N hermitian random matrix model at each chain site, and associating Feynman diagrams of these models to spatial configurations of the molecules. We obtain an exact expression for the topological expansion of the partition function of the system. We calculate exact and asymptotic expressions for the free energy, specific heat, entanglement and chemical potential and study their behavior as a function of temperature. Our results are consistent with the interpretation of 1/N1/N as being a measure of the concentration of Mg++\rm{Mg}^{++} in solution.Comment: 11 pages, 4 figure
    corecore