51 research outputs found

    Bioteknik och Reglerteknik — en oundgänglig kombination

    Get PDF

    Формы и системы оплаты труда работникам предприятия (на примере ОАО «Гомельхлебпром» филиал «Мозырский хлебозавод»)

    Get PDF
    Ligands for identifying protein aggregates are of great interest as such deposits are the pathological hallmark of a wide range of severe diseases including Alzheimers and Parkinsons disease. Here we report the synthesis of an azide functionalized fluorescent pentameric oligothiophene that can be utilized as a ligand for multimodal detection of disease-associated protein aggregates. The azide functionalization allows for attachment of the ligand to a surface by conventional click chemistry without disturbing selective interaction with protein aggregates and the oligothiophene-aggregate interaction can be detected by fluorescence or surface plasmon resonance. In addition, a methodology where the oligothiophene ligand is employed as a capturing molecule selective for aggregated proteins in combination with an antibody detecting a distinct peptide/protein is also presented. We foresee that this methodology will offer the possibility to create a variety of multiplex sensing systems for sensitive and selective detection of protein aggregates, the pathological hallmarks of several neurodegenerative diseases.Funding Agencies|Swedish Foundation for Strategic Research; Ehrling Persson Foundation; ERC Starting Independent Researcher grant (Project: MUMID)</p

    Conceptual Design of Micro-Bioreactors and Organ-on-Chips for Studies of Cell Cultures

    No full text
    Engineering design of microbioreactors (MBRs) and organ-on-chip (OoC) devices can take advantage of established design science theory, in which systematic evaluation of functional concepts and user requirements are analyzed. This is commonly referred to as a conceptual design. This review article compares how common conceptual design principles are applicable to MBR and OoC devices. The complexity of this design, which is exemplified by MBRs for scaled-down cell cultures in bioprocess development and drug testing in OoCs for heart and eye, is discussed and compared with previous design solutions of MBRs and OoCs, from the perspective of how similarities in understanding design from functionality and user purpose perspectives can more efficiently be exploited. The review can serve as a guideline and help the future design of MBR and OoC devices for cell culture studies

    Realization of user-friendly bioanalytical tools to quantify and monitor critical components in bio-industrial processes through conceptual design

    No full text
    This minireview suggests a conceptual and user-oriented approach for the design of process monitoring systems in bioprocessing. Advancement of process analytical techniques for quantification of critical analytes can take advantage of basic conceptual process design to support reasoning, reconsidering and ranking solutions. Issues on analysis in complex bio-industrial media, sensitivity and selectivity are highlighted from users perspectives. Meeting challenging analytical demands for understanding the critical interplay between the emerging bioprocesses, their biomolecular complexity and the needs for user-friendly analytical tools are discussed. By that, a thorough design approach is suggested based on a holistic design thinking in the quest for better analytical opportunities to solve established and emerging analytical needs

    Soft sensor control of metabolic fluxes in a recombinant Escherichia coli fed-batch cultivation producing green fluorescence protein

    No full text
    A soft sensor approach is described for controlling metabolic overflow from mixed-acid fermentation and glucose overflow metabolism in a fed-batch cultivation for production of recombinant green fluorescence protein (GFP) in Escherichia coli. The hardware part of the sensor consisted of a near-infrared in situ probe that monitored the E. coli biomass and an HPLC analyzer equipped with a filtration unit that measured the overflow metabolites. The computational part of the soft sensor used basic kinetic equations and summations for estimation of specific rates and total metabolite concentrations. Two control strategies for media feeding of the fed-batch cultivation were evaluated: (1) controlling the specific rates of overflow metabolism and mixed-acid fermentation metabolites at a fixed pre-set target values, and (2) controlling the concentration of the sum of these metabolites at a set level. The results indicate that the latter strategy was more efficient for maintaining a high titer and low variability of the produced recombinant GFP protein.Funding Agencies|Linkoping University||</p

    Orientation and capturing of antibody affinity ligands: Applications to surface plasmon resonance biochips

    No full text
    A surface plasmon resonance (SPR) sensor chip with immobilized protein G was used for simultaneously capturing, purifying and orienting antibody ligands. The ligands were further stabilized by chemical cross-linking. This procedure of designing the sensor chip improved efficient use of the ligands and could prolong the analytical use. less thanbrgreater than less thanbrgreater thanThe procedure was evaluated on standard dextran-coated sensor chips onto which commercial semi-purified antibodies towards human serum albumin and human troponin where captured and used for analysing their antigens. less thanbrgreater than less thanbrgreater thanThe procedure demonstrates a general design approach for presenting the biorecognition element on a biosensor surface which enhances sensitivity, stability and selectivity at the same time as an impure ligand is purified.Funding Agencies|European Commission|LSHB-CT-2007-037636|</p

    On-line monitoring of downstream bioprocesses

    No full text
    Downstream bioprocessing can benefit significantly from using on-line monitoring methods for surveillance, control and optimisation. Timely information on critical operational and product quality parameters provided by on-line monitoring may contribute to high product quality, more efficient process operation and better production economy. Here, recent advances in analytical techniques and tools are critically reviewed and assessed based on their capability to meet typical needs and requirements in the biotechnology industry. Soft sensors, which merge the signals generated from on-line monitoring devices into mathematical models, are highlighted for accessing critical information in downstream processing.Funding Agencies|EU-Horizon 2020 Marie Curie ITN project BIORAPID [643056]; Linkoping University</p
    corecore