157 research outputs found

    Potential between external monopole and antimonopole in SU(2) lattice glu odynamics

    Full text link
    We present the results of a study of the free energy of a monopole pair in pure SU(2) theory at finite temperature, both below and above the deconfinement tran sition. We find a Yukawa potential between monopoles in both phases. At low temp erature, the screening mass is compatible with the lightest glueball mass. At hi gh temperature, we observe an increased screening mass with no apparent disconti nuity at the phase transition.Comment: LATTICE 99 (Topology and Confinement

    Zero-modes of the QED Neuberger Dirac operator

    Get PDF
    We consider 4d4d compact lattice QED in the quenched approximation. First, we briefly summarize the spectrum of the staggered Dirac operator and its connection with random matrix theory. Afterwards we present results for the low-lying eigenmodes of the Neuberger overlap-Dirac operator. In the strong coupling phase we find exact zero-modes. Subsequently we discuss possibly related topological excitations of the U(1) lattice gauge theory.Comment: Lattice2001(confinement), 6 pages, 9 figure

    Exact Zero-Modes of the Compact QED Dirac Operator

    Get PDF
    We calculate the low-lying eigenmodes of the Neuberger overlap-Dirac operator for 4d4d compact lattice QED in the quenched approximation. In the strong coupling phase we find exact zero-modes, quite similar as in non-Abelian lattice QCD. Subsequently we make an attempt to identify responsible topological excitations of the U(1) lattice gauge theory.Comment: 10 pages, 4 figures, minor changes (typos corrected, table updated, reference added

    Spectrum of the U(1) staggered Dirac operator in four dimensions

    Get PDF
    We compare the low-lying spectrum of the staggered Dirac operator in the confining phase of compact U(1) gauge theory on the lattice to predictions of chiral random matrix theory. The small eigenvalues contribute to the chiral condensate similar as for the SU(2) and SU(3) gauge groups. Agreement with the chiral unitary ensemble is observed below the Thouless energy, which is extracted from the data and found to scale with the lattice size according to theoretical predictions.Comment: 5 pages, 3 figure

    Time of arrival in the presence of interactions

    Get PDF
    We introduce a formalism for the calculation of the time of arrival t at a space point for particles traveling through interacting media. We develop a general formulation that employs quantum canonical transformations from the free to the interacting cases to construct t in the context of the Positive Operator Valued Measures. We then compute the probability distribution in the times of arrival at a point for particles that have undergone reflection, transmission or tunneling off finite potential barriers. For narrow Gaussian initial wave packets we obtain multimodal time distributions of the reflected packets and a combination of the Hartman effect with unexpected retardation in tunneling. We also employ explicitly our formalism to deal with arrivals in the interaction region for the step and linear potentials.Comment: 20 pages including 5 eps figure

    Decoherent histories analysis of the relativistic particle

    Get PDF
    The Klein-Gordon equation is a useful test arena for quantum cosmological models described by the Wheeler-DeWitt equation. We use the decoherent histories approach to quantum theory to obtain the probability that a free relativistic particle crosses a section of spacelike surface. The decoherence functional is constructed using path integral methods with initial states attached using the (positive definite) ``induced'' inner product between solutions to the constraint equation. The notion of crossing a spacelike surface requires some attention, given that the paths in the path integral may cross such a surface many times, but we show that first and last crossings are in essence the only useful possibilities. Different possible results for the probabilities are obtained, depending on how the relativistic particle is quantized (using the Klein-Gordon equation, or its square root, with the associated Newton-Wigner states). In the Klein-Gordon quantization, the decoherence is only approximate, due to the fact that the paths in the path integral may go backwards and forwards in time. We compare with the results obtained using operators which commute with the constraint (the ``evolving constants'' method).Comment: 51 pages, plain Te

    Trajectories for the Wave Function of the Universe from a Simple Detector Model

    Get PDF
    Inspired by Mott's (1929) analysis of particle tracks in a cloud chamber, we consider a simple model for quantum cosmology which includes, in the total Hamiltonian, model detectors registering whether or not the system, at any stage in its entire history, passes through a series of regions in configuration space. We thus derive a variety of well-defined formulas for the probabilities for trajectories associated with the solutions to the Wheeler-DeWitt equation. The probability distribution is peaked about classical trajectories in configuration space. The ``measured'' wave functions still satisfy the Wheeler-DeWitt equation, except for small corrections due to the disturbance of the measuring device. With modified boundary conditions, the measurement amplitudes essentially agree with an earlier result of Hartle derived on rather different grounds. In the special case where the system is a collection of harmonic oscillators, the interpretation of the results is aided by the introduction of ``timeless'' coherent states -- eigenstates of the Hamiltonian which are concentrated about entire classical trajectories.Comment: 37 pages, plain Tex. Second draft. Substantial revision

    Decoherent Histories Approach to the Arrival Time Problem

    Get PDF
    We use the decoherent histories approach to quantum theory to compute the probability of a non-relativistic particle crossing x=0x=0 during an interval of time. For a system consisting of a single non-relativistic particle, histories coarse-grained according to whether or not they pass through spacetime regions are generally not decoherent, except for very special initial states, and thus probabilities cannot be assigned. Decoherence may, however, be achieved by coupling the particle to an environment consisting of a set of harmonic oscillators in a thermal bath. Probabilities for spacetime coarse grainings are thus calculated by considering restricted density operator propagators of the quantum Brownian motion model. We also show how to achieve decoherence by replicating the system NN times and then projecting onto the number density of particles that cross during a given time interval, and this gives an alternative expression for the crossing probability. The latter approach shows that the relative frequency for histories is approximately decoherent for sufficiently large NN, a result related to the Finkelstein-Graham-Hartle theorem.Comment: 42 pages, plain Te
    corecore