1,159 research outputs found

    Accelerating gravitational wave parameter estimation with multi-band template interpolation

    Get PDF
    Parameter estimation on gravitational wave signals from compact binary coalescence (CBC) requires the evaluation of computationally intensive waveform models, typically the bottleneck in the analysis. This cost will increase further as low frequency sensitivity in later second and third generation detectors motivates the use of longer waveforms. We describe a method for accelerating parameter estimation by exploiting the chirping behaviour of the signals to sample the waveform sparsely for portions where the full frequency resolution is not required. We demonstrate that the method can reproduce the original results with a waveform mismatch of ≤5×10−7\leq 5\times 10^{-7}, but with a waveform generation cost up to ∼50\sim 50 times lower for computationally costly frequency-domain waveforms starting from below 8 Hz

    Measuring intermediate mass black hole binaries with advanced gravitational wave detectors

    Get PDF
    We perform a systematic study to explore the accuracy with which the parameters of intermediate-mass black-hole binary systems can be measured from their gravitational wave (GW) signatures using second-generation GW detectors. We make use of the most recent reduced-order models containing inspiral, merger and ringdown signals of aligned-spin effective-one-body waveforms (SEOBNR) to significantly speed up the calculations. We explore the phenomenology of the measurement accuracies for binaries with total masses between 50 and 500 M⊙M_\odot and mass ratios between 0.1 and 1. We find that (i) at total masses below ~200 M⊙M_\odot, where the signal-to-noise-ratio is dominated by the inspiral portion of the signal, the chirp mass parameter can be accurately measured; (ii) at higher masses, the information content is dominated by the ringdown, and total mass is measured more accurately; (iii) the mass of the lower-mass companion is poorly estimated, especially at high total mass and more extreme mass ratios; (iv) spin cannot be accurately measured for our injection set with non-spinning components. Most importantly, we find that for binaries with non-spinning components at all values of the mass ratio in the considered range and at network signal-to-noise ratio of 15, analyzed with spin-aligned templates, the presence of an intermediate-mass black hole with mass >100 M⊙M_\odot can be confirmed with 95% confidence in any binary that includes a component with a mass of 130 M⊙M_\odot or greater.Comment: 6 pages, 8 figures; published versio

    A Transactional Analysis of Interaction Free Measurements

    Full text link
    The transactional interpretation of quantum mechanics is applied to the "interaction-free" measurement scenario of Elitzur and Vaidman and to the Quantum Zeno Effect version of the measurement scenario by Kwiat, et al. It is shown that the non-classical information provided by the measurement scheme is supplied by the probing of the intervening object by incomplete offer and confirmation waves that do not form complete transactions or lead to real interactions.Comment: Accepted for publication in Foundations of Physics Letter

    Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes

    Full text link
    Gravitational waves from coalescences of neutron stars or stellar-mass black holes into intermediate-mass black holes (IMBHs) of ≳100\gtrsim 100 solar masses represent one of the exciting possible sources for advanced gravitational-wave detectors. These sources can provide definitive evidence for the existence of IMBHs, probe globular-cluster dynamics, and potentially serve as tests of general relativity. We analyse the accuracy with which we can measure the masses and spins of the IMBH and its companion in intermediate-mass ratio coalescences. We find that we can identify an IMBH with a mass above 100 M⊙100 ~ M_\odot with 95%95\% confidence provided the massive body exceeds 130 M⊙130 ~ M_\odot. For source masses above ∼200 M⊙\sim200 ~ M_\odot, the best measured parameter is the frequency of the quasi-normal ringdown. Consequently, the total mass is measured better than the chirp mass for massive binaries, but the total mass is still partly degenerate with spin, which cannot be accurately measured. Low-frequency detector sensitivity is particularly important for massive sources, since sensitivity to the inspiral phase is critical for measuring the mass of the stellar-mass companion. We show that we can accurately infer source parameters for cosmologically redshifted signals by applying appropriate corrections. We investigate the impact of uncertainty in the model gravitational waveforms and conclude that our main results are likely robust to systematics.Comment: 9 pages, 11 figure

    Deterministic Dicke state preparation with continuous measurement and control

    Get PDF
    We characterize the long-time projective behavior of the stochastic master equation describing a continuous, collective spin measurement of an atomic ensemble both analytically and numerically. By adding state based feedback, we show that it is possible to prepare highly entangled Dicke states deterministically.Comment: Additional information is available at http://minty.caltech.edu/Ensemble

    Sequence validation of candidates for selectively important genes in sunflower

    Get PDF
    Analyses aimed at identifying genes that have been targeted by past selection provide a powerful means for investigating the molecular basis of adaptive differentiation. In the case of crop plants, such studies have the potential to not only shed light on important evolutionary processes, but also to identify genes of agronomic interest. In this study, we test for evidence of positive selection at the DNA sequence level in a set of candidate genes previously identified in a genome-wide scan for genotypic evidence of selection during the evolution of cultivated sunflower. In the majority of cases, we were able to confirm the effects of selection in shaping diversity at these loci. Notably, the genes that were found to be under selection via our sequence-based analyses were devoid of variation in the cultivated sunflower gene pool. This result confirms a possible strategy for streamlining the search for adaptively-important loci process by pre-screening the derived population to identify the strongest candidates before sequencing them in the ancestral population

    AXAF user interfaces for heterogeneous analysis environments

    Get PDF
    The AXAF Science Center (ASC) will develop software to support all facets of data center activities and user research for the AXAF X-ray Observatory, scheduled for launch in 1999. The goal is to provide astronomers with the ability to utilize heterogeneous data analysis packages, that is, to allow astronomers to pick the best packages for doing their scientific analysis. For example, ASC software will be based on IRAF, but non-IRAF programs will be incorporated into the data system where appropriate. Additionally, it is desired to allow AXAF users to mix ASC software with their own local software. The need to support heterogeneous analysis environments is not special to the AXAF project, and therefore finding mechanisms for coordinating heterogeneous programs is an important problem for astronomical software today. The approach to solving this problem has been to develop two interfaces that allow the scientific user to run heterogeneous programs together. The first is an IRAF-compatible parameter interface that provides non-IRAF programs with IRAF's parameter handling capabilities. Included in the interface is an application programming interface to manipulate parameters from within programs, and also a set of host programs to manipulate parameters at the command line or from within scripts. The parameter interface has been implemented to support parameter storage formats other than IRAF parameter files, allowing one, for example, to access parameters that are stored in data bases. An X Windows graphical user interface called 'agcl' has been developed, layered on top of the IRAF-compatible parameter interface, that provides a standard graphical mechanism for interacting with IRAF and non-IRAF programs. Users can edit parameters and run programs for both non-IRAF programs and IRAF tasks. The agcl interface allows one to communicate with any command line environment in a transparent manner and without any changes to the original environment. For example, the authors routinely layer the GUI on top of IRAF, ksh, SMongo, and IDL. The agcl, based on the facilities of a system called Answer Garden, also has sophisticated support for examining documentation and help files, asking questions of experts, and developing a knowledge base of frequently required information. Thus, the GUI becomes a total environment for running programs, accessing information, examining documents, and finding human assistance. Because the agcl can communicate with any command-line environment, most projects can make use of it easily. New applications are continually being found for these interfaces. It is the authors' intention to evolve the GUI and its underlying parameter interface in response to these needs - from users as well as developers - throughout the astronomy community. This presentation describes the capabilities and technology of the above user interface mechanisms and tools. It also discusses the design philosophies guiding the work, as well as hopes for the future

    Spatial region filtering in IRAF/PROS

    Get PDF
    In order to analyze x ray data, it is nearly always necessary to extract source and background events from a data set. Typically, this is done by defining geometric spatial regions of the data set to describe the source and background. For example, one might wish to extract source events from a circular or elliptical region centered at a particular pixel, and background events from a circular or elliptical annulus whose inner radius matches the source region. At the same time, it might be necessary to exclude one or more nearby sources from the source or background region in question. Thus, it might be necessary to define a pie-shaped region or even an entirely irregularly-shaped region to exclude. A spatial filtering scheme called REGIONS was implemented in IRAF/PROS to support these and other types of spatial region extraction. It allows users to create a spatial mask by specifying one or more ASCII geometric shape descriptors (box, circle, ellipse, pie, point, annulus, and polygon) as regions to be included or excluded in the mask. In addition, two or more shapes can be combined using Boolean algebra to create an infinite variety of sophisticated regions. Each geometric shape has a specific set of parameters that describe that shape. For example, a circle is described by a center and a radius, while a box is described by a center, length, width, and rotation angle. These quantities can be specified in units of pixels or, in cases where the target image contains world coordinate system information, they can be described in units such as RA and Dec. Users can create region mask files by feeding an ASCII region descriptor to the IRAF/PROS plcreate task. Temporary masks can also be created from ASCII region descriptors by individual applications that call the routines in the region creation library. This library implements a yacc-based region parser that compiles the ASCII descriptors into 'software CPU' instructions which are then executed to create the mask. The mask created from these region descriptors is a standard IRAF PLIO mask. It can be combined with other PLIO masks (e.g., exposure masks) to provide complete spatial filtering capabilities. The capabilities of the region filtering scheme are described. It also discusses the design philosophy guiding our work, as well as our plans for the future

    A target enrichment method for gathering phylogenetic information from hundreds of loci: An example from the Compositae.

    Get PDF
    UnlabelledPremise of the studyThe Compositae (Asteraceae) are a large and diverse family of plants, and the most comprehensive phylogeny to date is a meta-tree based on 10 chloroplast loci that has several major unresolved nodes. We describe the development of an approach that enables the rapid sequencing of large numbers of orthologous nuclear loci to facilitate efficient phylogenomic analyses. •Methods and resultsWe designed a set of sequence capture probes that target conserved orthologous sequences in the Compositae. We also developed a bioinformatic and phylogenetic workflow for processing and analyzing the resulting data. Application of our approach to 15 species from across the Compositae resulted in the production of phylogenetically informative sequence data from 763 loci and the successful reconstruction of known phylogenetic relationships across the family. •ConclusionsThese methods should be of great use to members of the broader Compositae community, and the general approach should also be of use to researchers studying other families
    • …
    corecore