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Abstract
Parameter estimation on gravitational wave signals from compact binary 
coalescence (CBC) requires the evaluation of computationally intensive 
waveform models, typically the bottleneck in the analysis. This cost will 
increase further as low frequency sensitivity in later second and third 
generation detectors motivates the use of longer waveforms.

We describe a method for accelerating parameter estimation by exploiting 
the chirping behaviour of the signals to sample the waveform sparsely for 
portions where the full frequency resolution is not required. We demonstrate 
that the method can reproduce the original results with a waveform mismatch 
of  ⩽5 × 10−7, but with a waveform generation cost up to ∼50 times lower for
computationally costly frequency-domain waveforms starting from below 8 Hz.

Keywords: LIGO, parameter estimation, waveform optimisation, 
Einstein telescope

(Some figures may appear in colour only in the online journal)

1. Introduction

The discovery of gravitational waves from coalescing binary black hole systems made by 
Advanced LIGO in its first observing run opened the door to gravitational wave astronomy 
[1]. As the second generation of ground based detectors continues to evolve towards their 
design sensitivities the rate of detections is expected to increase, leading eventually to the 
detection of lower mass binary systems such as binary neutron star (BNS) and neutron  
star—black hole (NSBH) binaries [2].

The characterisation of these sources involves the use of Bayesian parameter estimation 
and model selection algorithms based on stochastic sampling of the posterior probability 
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distribution for the model parameters conditioned on the observed data. This process involves 
repeated comparisons of the data with template waveforms through evaluation of the likeli-
hood function. Previous implementations (e.g. LALInference [3]) have required millions 
of likelihood evaluations, which implies that a similar number of template waveforms must be 
generated. In the case of sophisticated waveform models this template generation dominates 
the computational cost of the analysis, with the cost scaling linearly with the length of the 
waveform τ, which in turn scales with the low frequency starting point of the waveform as 

f−8/3
min . As the low-frequency sensitivity of the second-generation instruments improves, fmin is 

expected to reduce from ∼30 Hz to ∼10 Hz or lower. The issue becomes even greater in the 
case of subterranean third-generation instruments such as the Einstein Telescope which are 
expected to reduce this further to 5 Hz or lower [4, 5]. This improvement in low-frequency 
sensitivity should translate to much more accurate estimation of key parameters. However, 
taking full advantage of this improvement in a timely and computationally efficient manner 
is a challenge. We present a method that leverages the frequency evolution of the waveform 
to effectively reduce the number of waveform samples that must be computed. This has the 
potential to asymptotically reduce the computational cost of template generation by a factor 
that is proportional to f−1

min. Here we give details of a practical implementation which does not 
compromise the accuracy of parameter estimation and study the computational cost scaling 
in a realistic analysis.

Several methods have been developed previously to overcome the need to evaluate the 
waveform and likelihood at each point in the Fourier domain. Reduced order quadrature 
(ROQ) methods, first introduced for CBC waveforms in [6] and developed for the purpose of 
parameter estimation (PE) in [7–10], seek to represent the waveform in an alternative basis 
from the standard Fourier components. A waveform for a particular point in parameter space 
is represented as the linear combination of a number of these basis templates. By projecting 
the data into the same basis the likelihood function can be computed using a sum over bases 
rather than a sum over Fourier components, where the number of bases is far smaller than the 
number of Fourier components. This method significantly accelerates the likelihood compu-
tation. However, it has the drawback of requiring the basis to be constructed in advance for 
each waveform family, a process which is costly in terms of both computation and memory 
requirements to store the input waveforms, with a cost that grows rapidly as the dimensional-
ity of the model is increased to include misaligned spins. The large intrinsic volume of the 
mass parameter space requires that it be subdivided into patches of manageable size, with each 
patch having a different set of bases. The ROQ likelihood calculation is also dependent on the 
particular noise curve used through the ROQ integration weights, which must be computed 
for the particular characteristics of the data at the time of the event of interest. Furthermore, 
severing the link between frequency and the representation of the waveform makes it difficult 
to model the effect of frequency-dependent detector calibration errors, which were included 
in the analysis of binary black hole systems in O1 [11, 12].

A different approach has been developed in the context of low-latency searches for gravi-
tational waves. In this context the incoming data-stream is filtered against a pre-determined 
bank of templates which is chosen to cover the mass parameter space with a certain maximum 
guaranteed loss of signal-to-noise ratio (SNR). Although here the filtering can proceed in par-
allel it is still desirable to reduce the cost of the search by reducing the volume of data that has 
to be processed. The MBTA [13, 14] and gstlal [15] pipelines divide the templates into bands, 
which are chosen to exploit the chirping nature of the inspiral signal. Each band has a certain 
maximum signal frequency f < fmax, so both the template and the data can be down-sampled 
to a lower sampling rate, reducing the cost of the filtering process for each band. The original 
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high-bandwidth SNR time-series can be reconstructed from the output of the banded filters by 
subsequent up-sampling, which can be done selectively on data stretches which have signifi-
cant SNR in the banded filters. A similar approach has been advocated for LISA data analysis, 
employing two bands for each template [16], as is also the case for MBTA.

In this paper we pursue an approach inspired by the latter method of subdividing the wave-
form into band-limited pieces, with the aim of using it for PE rather than searching. This 
places some additional constraints on the accuracy of waveform reconstruction required to 
reproduce the results from a full-bandwidth analysis without adding systematic or statisti-
cal errors. Our method is currently limited to the computation of the template (likelihood 
evaluation is still performed in the full Fourier basis), but nevertheless can produce large 
reductions in computational cost for long duration signals when the more sophisticated (and 
costly) waveform models are employed. Unlike the ROQ, this allows us to maintain the link 
with frequency and easily include calibration error modelling in the analysis. Also, because 
the method requires no pre-computation of a new basis it can be applied without modification 
to any frequency-domain waveform model, including modifications to the signal such as tidal 
effects [17, 18] and parameterised deviations from general relativity [19, 20]. This flexibility 
is the main advantage of the method, which makes it especially suitable for analyses where an 
ROQ model is not available, or where its production would be too costly. An implementation 
is provided in the open source LALInference PE software [3]. We describe the method 
in detail in section 2 and demonstrate its efficacy when applied to the analysis of simulated 
signals in section 3. We discuss possible future developments in section 4.

2. Multi-banding approach: the method

2.1. Motivation

In gravitational wave PE, the aim is to explore the posterior probability distribution of the 
source model,

p(�θ|�d, H) =
p(�θ|H) p(�d|�θ, H)

p(�d|H)
 (1)

where �θ  are the physical parameters of the source such as the masses, spins, position and ori-
entation [3]. The likelihood function for a single detector under the assumption of Gaussian 
noise depends on the data �d  and the parameter �θ , as well as the particular waveform model 
used H, as

p(�d|�θ, H) ∝ exp

[
−2

N∑
i

|hi(�θ)− �di|2

τSn( fi)

]
 (2)

where Sn( fi) is the power spectral density of the detector, τ = δf−1 is the duration of the 
data segment to be analysed, and N = τ/(2δt) is the number of Fourier components in the 
frequency-domain complex representation of the modeled signal hi(�θ) as it would be observed 
in the detector. Since the details of the detector responses are not important for what follows 
we refer the reader to [3] for a full description of how the extrinsic parameters are used to 
construct the observed signal in each detector. In order to accurately capture the waveform 
we must choose τ and δt such that the entire signal duration, from the time it enters the sensi-
tive band of the instrument at frequency fmin, is contained in τ, and the sampling resolution 
δt < (2fmax)

−1 is sufficient to capture the highest frequency components of the signal at fmax.

S Vinciguerra et alClass. Quantum Grav. 34 (2017) 115006
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To leading order, the duration of an inspiral signal from a certain frequency f to the formal 
time of coalescence is [21] (in geometrical units G  =  c  =  1)

t( f ) ≈ 5 [8πf ]−8/3 M−5/3, (3)

where M = M3/5
1 M3/5

2 (M1 + M2)
−1/5 is the chirp mass of a binary with component masses 

M1,2 and mass ratio q = M2/M1 � 1. During the inspiral, the gravitational-wave frequency 
monotonically increases until the merger and ring-down phases. An example is shown in  
figure 1, where we put frequency on the abscissa to emphasize that we are working in the 
frequency domain.

In the standard calculation, there is a fixed frequency resolution of δf = τ−1 between  
frequency bins, and the total number of frequency-domain samples required to describe the 
signal is

Nfix =

∫ fmax

fmin

δf−1df

= ( fmax − fmin)τ

≈ 5(8π)−8/3M−5/3( fmax − fmin) f−8/3
min .

 

(4)

We can see from the figure that this frequency resolution is necessary to contain the full length 
waveform starting at time τ before merger, but as the frequency increases the time before 
merger t( f ) decreases and the waveform is over-sampled in frequency. Our aim is to take 
advantage of this to increase δf  as a function of frequency without losing any information 
about the waveform phasing, thereby reducing the total number of points at which the wave-
form must be evaluated.

We now consider the asymptotic limit of multi-banding. In the idealized limit, the fre-
quency step δf = t( f )−1 can vary continuously throughout the signal. We then have

Figure 1. Time from a given frequency to coalescence for a fiducial binary neutron 
star signal. Coloured boxes indicate the subdivision of the waveform into bands with 
adaptive frequency resolution, as determined by the time before coalescence; see 
section 2.2.
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Nmin =

∫ fmax

fmin

t( f )df

= −3(8π)−8/3M−5/3( f−5/3
max − f−5/3

min ) .

 

(5)

The relative number of points required for the standard case compared to the ideal case is then

Nfix

Nmin
=

5
3
( fmax − fmin) f−8/3

min

f−5/3
min − f−5/3

max

, (6)

which for fmax � fmin indicates an asymptotic reduction in number of points 5fmax/3fmin. For 
a binary neutron star waveform which enters the detector at 20 Hz and terminates at 1500 Hz, 
the potential reduction in number of points is therefore a factor of ∼125.

2.2. Choice of bands

Rather than taking the continuously varying δf  case, in our practical implementation we work 
with a pre-determined set of frequencies which divides the total frequency span into several 
bands with constant δf  within each band. We position the bands in frequency space so that δf  
changes by a factor of 2 between neighboring bands, while ensuring that the Nyquist sampling 
criterion is always met.

Figure 1 shows a schematic of the basic idea. We must choose our bands such that they 
are able to accurately represent the longest waveform in our allowed mass prior. This can be 
determined automatically at run-time of the PE code; e.g. a 1 + 1M� binary neutron star sig-
nals lasts 281 s from 20 Hz to coalescence. Starting at the lowest frequency fmin, the frequency 
resolution necessary to contain the waveform is δf 0 � t( fmin)

−1. Each subsequent band has a 
sampling rate δf b = 2δf b−1 and so the time at the start of the new band is a factor of two closer 
to coalescence, t( fb) = t( fb−1)/2. The frequencies at which to place the band boundaries are 
then determined by inverting equation (3) and solving for the series of δf b. To summarise, we 
can specify the frequencies at which the waveform is evaluated via the following algorithm

b  =  0, i  =  0
δf b = t( fmin)

−1, fi = fmin
while fi < fmax do
   while t( fi) > (2δf b)

−1 do
     fi+1 = fi + δf b

     i  =  i  +  1
   end
   δf b+1 = 2δf b

   b  =  b  +  1
end

2.3. Up-sampled waveform

Having defined the reduced set of frequencies at which the waveform is to be calculated, we 
now outline the procedure for reconstructing the full waveform. Note that unlike in reduced 
order quadrature methods, we still compute the likelihood using the fully sampled dataset. 
A naïve decimation or averaging of the frequency-domain detector data leads to a loss of 
information relative to the fully-sampled results. We therefore use an interpolation scheme 
to reconstruct the waveform at the full sampling rate in order to match filter the original data.

S Vinciguerra et alClass. Quantum Grav. 34 (2017) 115006
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Direct linear interpolation of the reduced waveform h̃( fj) does not accurately reproduce 
the original waveform as the oscillatory behaviour is not captured by the interpolating straight 
line segments. We therefore work with the waveform represented in amplitude and phase as 
h̃( fj) = Aj exp(iφj), where j labels the reduced set of frequencies. Within each coarse bin, 
we linearly interpolate the amplitude A and phase φ to obtain estimates of the amplitude 
Âk = Â( f̂k) and phase φ̂k = φ̂( f̂k) at the dense set of frequencies f̂  labeled with k:

Âk = Aj +
f̂k − fj

fj+1 − fj
(Aj+1 − Aj) , (7)

φ̂k = φj +
f̂k − fj

fj+1 − fj
(φj+1 − φj) , (8)

where fj is the nearest coarse frequency point below f̂k  and f̂k+1 − f̂k = δf0. The up- sampled 
waveform after multi-banding and interpolation (hereafter MB-Interpolation) is then 
h̃( f̂k) = Âk exp(iφ̂k).

One practical problem with applying this formula is that the exact estimation of 
exp iφ̂k is computationally expensive. To avoid this we use the recursive property 

eiφ̂k+1 = eiφ̂k eiδf0(φj+1−φj)/( fj+1−fj). The last term needs to be computed only once for each 
coarse bin [22]. The recursion relation can be expressed in terms of the real and imaginary 
parts of the complex frequency-domain signal as

�(ĥk+1) =

[
1 +

(Aj+1 − Aj)δf0
Âk( fj+1 − fj)

] [
�(ĥk)

(
1 − 2 sin2 δφj

2

)
−�(ĥk) sin δφj

]
,

�(ĥk+1) =

[
1 +

(Aj+1 − Aj)δf0
Âk( fj+1 − fj)

] [
�(ĥk)

(
1 − 2 sin2 δφj

2

)
+ �(ĥk) sin δφj

]
,

where δφj ≡ δf0(φj+1 − φj)/( fj+1 − fj); therefore we only need to compute sin(δφj) and 
sin2(δφj/2).

2.4. Accuracy

The waveform accuracy required for parameter estimation is determined by the condition that 
systematic bias in parameter estimates from imperfect waveforms should be much smaller 
than the statistical measurement uncertainty of inference on data with finite signal-to-noise 
ratios (e.g. [23]). Therefore, the shift in the log likelihood due to the use of MB-Interpolation 
waveforms in lieu of the original waveforms, δ log LMB−Interpolation, should be smaller than the 
spread in the log likelihood over the posterior σlog L:

δ log LMB−Interpolation � σlog L ∼
√

Nparam

2
, (9)

where Nparam is the number of parameters in the model. This condition on the log like-
lihood can be expressed in terms of the match between the original waveform h0 and the 
MB-Interpolation waveform h [24–26]:

〈h0 − h|h0 − h〉
〈h0|h0〉

�
√

2Nparam

ρ2 , (10)

S Vinciguerra et alClass. Quantum Grav. 34 (2017) 115006
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where ρ is the signal-to-noise ratio. Considering ρ ∼ 20, typical for a moderately loud signal 
[27], the threshold on the mismatch is ∼10−3.

Figure 2 show that the mismatch of MB-Interpolation waveforms against the original 
waveforms is a factor of a thousand smaller than this requirement over the binary neutron star 
region, decreasing for more massive systems. This is expected, as in the frequency domain the 
density of cycles at low frequency increases with the time duration of the waveform, so the 
most demanding case is that of the lowest mass considered in a particular analysis (in our case 
a 1–1 M� binary). Therefore, we conclude that this procedure provides sufficient accuracy for 
unbiased inference at all masses above 1–1 M�.

3. Results

We implemented the MB-Interpolation approach (section 2), including the waveform inter-
polation procedure (section 2.3) within LALInference [3]. We performed several tests in 
order to validate MB-Interpolation. We first checked the effectiveness of the MB-Interpolation 
by verifying the reduction of the number of frequencies at which the template is evaluated 
when multibanding. We then measured the speedup in the waveform computation following 
multibanding and interpolation. Finally, we tested the overall acceleration of the complete PE 
analysis with MB-Interpolation and confirmed its accuracy.

3.1. Reduction of template evaluations

To measure the speedup in waveform generation we first defined the frequency set at which 
the multibanded template is evaluated according to the algorithm in section 2.2. The in-band 
signal duration is set by a BNS with both component masses equal to 1M� as a reference sys-
tem, corresponding to the lowest limit of the component mass prior adopted in the analysis. 
The number of frequencies at which the waveform is evaluated is shown in figure 3 as a func-
tion of the starting frequency fmin for both MB-Interpolation and the standard algorithm. This 
figure clearly demonstrates the effectiveness of the approach in reducing template evaluations: 
the number of frequencies defining the two sets, Nfix and NMB respectively for the standard 

Figure 2. Mismatch of MB-Interpolation waveforms (h) against waveforms computed 
with the standard procedure (h0) as a function of chirp mass and mass ratio. The 
mismatch is calculated up to 1024 Hz.

S Vinciguerra et alClass. Quantum Grav. 34 (2017) 115006
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and the MB-Interpolation algorithm, differs by an order of magnitude or more for starting 
frequencies below 40 Hz.

The evident segmented structure of NMB reflects the varying number of frequency bands 
used in MB-Interpolation. Within each band, δf  is constant and the number of frequencies 

follows the same ∼f−8/3
min  scaling as for the standard algorithm. As expected, this yields sub-

optimal behavior relative to the theoretical limit of a continuously varied sampling frequency, 
as clearly demonstrated by the ideal case (green line) falling well below the actual NMB points 
in the same figure.

3.2. Speedup of waveform generation

We measured the reduction in the total waveform generation time, including both multiband-
ing and interpolation, for compact binary systems with chirp-mass of ∼1.48 M�. The wave-
forms were generated up to a frequency fmax of 2048 Hz with a time domain sampling rate of 
4096 Hz. We used two different waveform models for both generating and analysing injec-
tions to test the efficacy of our approach: TaylorF2 (see for example [28]) and IMRPhenomPv2 
[29]. The former is one of the simplest and most common waveform models available for the 
coalescence of compact binaries. It analytically describes the inspiral stage of the coalescence 
using the stationary phase approximation. Meanwhile, the analytical IMRPhenomPv2 model 
includes the inspiral, merger and ringdown phases, calibrated to numerical relativity simula-
tions. The IMRPhenomPv2 waveform family has been used to characterize the BBH systems 
discovered during O1, the first science run of Advanced LIGO [30]. IMRPhenomPv2 wave-
forms are more sophisticated and more computationally expensive than TaylorF2 ones. Since 
the main effect of the proposed method is reducing the number of template evaluations, it is 
for computationally expensive cases that we expect to benefit the most from its application.

Figure 3. Number of frequencies at which the waveform is evaluated when using the 
standard (Nfix, red dots) and MB-Interpolation (NMB, blue dots) algorithms as a function 
of the lower frequency limit. The red curve corresponds to equation (4) while the green 
curve shows the number of frequency samples in the theoretical limit of continuously 
adapted sampling steps, equation (5). MB-Interpolation is sub-optimal but approaches 
the asymptotic case in the limit fmin → 0, as the templates become very long and δf 0 
approaches 0; the number of frequency bands increases from 3 at fmin = 60 Hz to 8 at 
fmin = 20 Hz and 11 at fmin = 8 Hz.

S Vinciguerra et alClass. Quantum Grav. 34 (2017) 115006
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Figure 4 shows the speedup in the template generation as a function of the starting fre-
quency, for the TaylorF2 waveform model in the left panel, and for IMRPhenomPv2 in the 
right one. The length of the data segments was set by calculating the duration of a BNS signal 
with 1 M� components starting from the chosen fmin. The template generation speed was cal-
culated by averaging the time necessary to construct one waveform over 3000 (300) trials for 
the TaylorF2 (IMRPhenomPv2) model. We define the gain in speed (blue points in figure 4) 
as the ratio between the average time required by the standard and the MB-Interpolation algo-
rithms to compute one template.

For comparison, the right panel of figure 4 includes the reduction in the number of frequen-
cies at which the waveform is evaluated when using MB-Interpolation, Nfix/NMB (red points). 
The gains for MB-Interpolation are smaller than the ratio Nfix/NMB because of the additional 
cost of interpolating between the NMB frequency samples.

We find that the MB-Interpolation scheme yields a dramatic gain in computational speed for 
smaller values of fmin. At fmin = 20 Hz TaylorF2 templates were accelerated by a factor of 10. 
The slower IMRPhenomPv2 family shows significantly greater gains than the faster TaylorF2 
family, as illustrated by the difference in ordinate scales between the two panels of figure 4. 
Thus, IMRPhenomPv2 template generation was around 25 times faster with MB-Interpolation 
at fmin = 20 Hz. While both waveform families show a greater gain for smaller values of fmin, 
the same segmentation is present as in figure 3, although this is less obvious for the TaylorF2 
family. This reflects the dependence of the time required to compute one waveform, T, on the 
number of frequency bands.

Within the standard approach, this time TStandard can be approximated as the product of the 
time necessary to calculate the waveform at a given frequency tw with the number frequencies 
Nfix:

TStandard ∼ Nfix · tw. (11)

To estimate the same time in the MB-Interpolation algorithm we need to take into account 
two different contributions: the template generation applied to a reduced set of frequencies, 
and the calculations necessary for the waveform interpolation ti. This leads to the following 
approximation:

TMB−Int. ∼ Nfix · ti + NMB ·
(
tw + δti) (12)

Here δti represents the time required to compute the quantities necessary for the interpolation 
(such as phase, derivatives, etc); typically δti � tw.

According to equation  (12), the time required to compute a complete waveform via 
MB-Interpolation depends on fmin only through Nfix and NMB. However, the first term in 

equation (12) becomes increasingly dominant as fmin decreases, since Nfix ∝ f−8/3
min . For suf-

ficiently small fmin, Nfix · ti � NMB ·
(
tw + δti

)
 and the speedup asymptotes to a fixed factor 

TStandard/TMB−Int. → tw/ti, independent of fmin. The frequency at which this happens depends 
in general on the computational cost of the particular waveform model. The results reported 
in figure 4 suggest gains exceeding ∼16 (∼50) for starting frequencies below 8 Hz for the 
TaylorF2 (IMRPhenomPv2) waveform models.

3.3. Inference

To verify that the results obtained with the MB-Interpolation algorithm remain accurate, and 
to measure the speedup of an end-to-end inference run, we also performed several complete 
PE analyses. We injected a gravitational wave signal emitted by a neutron star binary with 
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component masses M1 = M2 = 1.4 M� into stationary Gaussian noise, coloured according 
to the design sensitivity curves of advanced LIGO and Virgo [31]. The signal was always 
injected at a distance of DL ≈ 200 Mpc so that the SNR at fmin = 40 Hz source was 15; sig-
nals with lower fmin have correspondingly higher SNR.

The PE analyses were performed with LALInferenceNest, using the same maximum 
frequency fmax = 2048 Hz and time-domain sampling rate (4096 Hz) adopted in section 3.2. 
Priors on companion masses were uniform in the range 1–3 M� and the prior on distance was 
uniform in volume with a maximum distance of 500 Mpc. We chose this region of mass space 
as it is the most challenging in terms of computational cost and has the strictest accuracy 
requirements for waveform interpolation.

3.3.1. PE consistency The analysis of the mock data with MB-Interpolation templates pro-
duced posterior distributions statistically identical to the ones obtained with a standard anal-
ysis. As a representative case, in figure  5 we show the marginalized posterior probability 
density functions for chirp mass, mass ratio and luminosity distance, the quantities most sensi-
tive to phase and amplitude errors. We confirmed the visual agreement between the marginal 
probability distributions obtained with the standard and the MB-Interpolation algorithms by 
performing a Kolmogorov–Smirnov test, which showed that the two sets of samples are con-
sistent with random draws from the same distribution.

3.3.2. PE speedup To test the effect of the speedup in the waveform generation on the over-
all PE analysis, we measured the computational time required to perform end-to-end PE runs. 
We performed PE analyses from different values of the starting frequency fmin, consequently 
changing the lengths of the data segments. The results are reported in table 1 and figure 6.

For each starting frequency and for both standard and MB-Interpolation algorithms, the 
times of 4 runs have been averaged. The ratio between the average time required to complete 

Figure 4. Gain factor in computational speed of template generation as a function 
of fmin. Blue points: ratio of the average waveform computation cost for the standard 
procedure versus MB-Interpolation as a function of the starting frequency for TaylorF2 
(left panel) and IMRPhenomPv2 (right panel) waveform families. Red points in right 
panel: ratio between the number of frequencies at which the waveform is evaluated 
when using the standard procedure versus MB-Interpolation.
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a PE analysis adopting the standard and the MB-Interpolation algorithms has been used to 
define the overall speedup gain GPE. Each group of 4 identical analyses has been run at the 
same time on a Dual-Core AMD Opteron 2218 Processor with a clock speed of 2.6 GHz.

Table 1 reports the measured speed gain for the whole PE analysis with the TaylorF2 
(abbreviated as TF2) waveform model in the third column. The fourth column contains the 
speedup in the template calculation (see figure 4). In the last two columns we also report the 
ratio between the number of frequencies at which the waveform is evaluated in the standard 
and the MB-Interpolation algorithms Nfix/NMB, as well as the idealized improvement in the 
limit of continuously adapted sampling rates Nfix/Nmin (equation (6)).

As can be seen from table 1, we do not obtain the full idealized gain that may be expected 
from multi-banding for three reasons. Firstly, the actual number of frequencies at which the 
waveform is computed in our multi-banding algorithm is larger than the theoretical limit, so 
Nfix/NMB < Nfix/Nmin. Secondly, the template computation speedup is less than the reduction 
in the set of frequencies due to multi-banding, Gtemplate < Nfix/NMB, because of the additional 
cost of interpolation. Thirdly, the PE speedup is smaller than the speedup in template genera-
tion, GPE < Gtemplate, because template generation is only one component of the PE algorithm. 
Although the waveform computation is the dominant computational cost for computationally 
expensive templates, the cost of evaluating the likelihood still grows with the number of fre-
quency bins even when using MB-Interpolation, and along with interpolation this can become 
the most expensive step when using MB-Interpolation with very long waveforms.

We did not repeat the end-to-end parameter estimation calculations across the full range 
of starting frequencies with IMRPhenomPv2 waveforms because the computational cost was 
unacceptably high when using the standard procedure. Nonetheless, it is possible to estimate 
the computational cost gain one would achieve with IMRPhenomPv2 waveforms when start-
ing with low values of fmin. For computationally expensive waveforms, the parameter estima-
tion cost is dominated by the waveform computation cost; this is a factor of ∼3 higher for 
IMRPhenomPv2 waveforms than for TaylorF2 waveforms. (This factor is independent of the 
waveform duration or starting frequency, and reflects the difference in the cost of comput-
ing the two waveforms at a given frequency point.) Therefore, we expect that the total PE 

Figure 5. Posterior distributions of chirp mass M, mass ratio q and luminosity distance 
DL with the TaylorF2 waveform model.

S Vinciguerra et alClass. Quantum Grav. 34 (2017) 115006



12

computational cost with IMRPhenomPv2 waveforms to be about the same factor of 3 larger 
than for TaylorF2 waveforms when starting at low frequencies and using the standard proce-
dure. Meanwhile, for sufficiently low starting frequencies, the MB-Interpolation waveform 
computation cost is dominated by interpolation, so that the template computation cost with 
IMRPhenomPv2 and TaylorF2 waveforms when using MB-Interpolation asymptotes to the 
same value—and so does the full PE computational cost. Thus, we expect that end-to-end PE 
gains from using MB-Interpolation with IMRPhenomPv2 will be a factor of ∼3 greater than 
with TaylorF2 waveforms.

MB-Interpolation is most effective for smaller values of the starting frequency. Figure 4 
shows that with fmin = 8 Hz the template speed-up factor is ∼16 for TaylorF2 waveforms and 
∼50 for IMRPhenomPv2 waveforms, where we conservatively assume that there are no fur-
ther significant gains in waveform computation at lower starting frequencies because of fixed 
interpolation costs. As discussed above, the total PE speed-up will not be as large as the speed 

Table 1. The table reports the results obtained for different values of starting frequency 
fmin (first column) and corresponding sampling steps δf0 for standard template 
generation (second column). The values GTF2

PE  are the actually measured speed gains 
in the complete PE analyses with TaylorF2 due to using MB-Interpolation. GTF2

template  is 
the gain in the waveform generation speed (TStandard/TMB−Int.). Nfix/NMB is the ratio 
between the number of frequencies at which the standard and multibanded waveforms 
are evaluated, while Nfix/Nmin is the limiting case for the reduction in waveform 
evaluations when continuously adapting frequency steps.

fmin (Hz) δf0 (Hz) GTF2
PE GTF2

template Nfix/NMB Nfix/Nmin

60 1/16 1.09 ± 0.03 1.31 ± 0.01 3.76 55.4
40 1/64 1.56 ± 0.05 3.8 ± 0.1 12.82 83.8
30 1/128 1.91 ± 0.07 5.5 ± 0.1 23.40 112.2
20 1/300 2.72 ± 0.14 8.8 ± 0.2 61.01 169.1

Figure 6. Observed gains in the end-to-end PE run-time, GTF2
PE , as a function of the 

starting frequency for analyses carried out with TaylorF2 waveforms.
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gain in template generation because of other fixed costs. Nevertheless, as next generation 
interferometers (such as the Einstein Telescope [4], KAGRA [32] and the Cosmic Explorer 
[33]) take advantage of low-frequency data, MB-Interpolation should improve parameter esti-
mation costs by factors of tens, or more for more expensive waveform models.

4. Conclusion

Parameter estimation has played an important role in the opening of the field of gravitational 
wave astronomy, as demonstrated in the analysis of Advanced LIGO’s first observations  
[11, 12]. The stochastic sampling algorithms used in these analyses require the generation of 
millions of template waveforms which are compared to the data, a computational task that 
becomes more expensive as the in-band signal duration increases: for signals from lower mass 
binaries and for detectors with improved sensitivities at lower frequencies. The generation of 
computationally expensive template waveforms is the bottleneck in the PE analysis, limit-
ing our ability to obtain results quickly. In this paper we proposed an alternative approach to 
reduce this cost and consequently the overall time required to produce a result. The procedure 
is inspired by the same multi-banding approach already adopted for low-latency algorithms 
dedicated to gravitational wave searches [14, 34]. It consists in reducing the set of frequen-
cies at which to evaluate waveforms by dividing the spectral range into different bands and 
optimising the sampling procedure. However, the greater accuracy required in the context of 
PE demanded an additional up-sampling of the waveform when computing the likelihood 
function, which led us to apply a linear interpolation in phase and amplitude.

We have demonstrated the effectiveness of the method by implementing it in the 
LALInference PE code and comparing the results to inference with the full waveform. We 
found negligible differences between the results at a greatly reduced computational cost. We 
showed that the MB-Interpolation algorithm reduces the number of frequencies at which the 
waveform is evaluated by more than an order of magnitude for fmin < 40 Hz. This leads to 
an acceleration of the waveform generation and, consequently, the whole analysis. For a fixed 
chirp mass of the binary, the speed-up factor depends on the complexity of the model and on 
the starting frequency fmin. We studied the most challenging case of binary neutron stars, adopt-
ing the TaylorF2 and IMRPhenomPv2 waveform families. In section 3 we reported speedup 
factors in the template generation which reached ∼50 for the most sophisticated waveform 
model (IMRPhenomPv2) at fmin ∼ 10 Hz. Although the overall decrease in the computational 
cost of end-to-end PE is more modest than the improvement in template generation because 
of fixed costs, we expect factors of tens in speed gain when using IMRPhenomPv2 templates 
with starting frequencies of a few Hz. The considerable speedup gains reached by the imple-
mentation of the MB-Interpolation method demonstrates the effectiveness of the approach.

Our method is related to the reduced order quadrature models of gravitational waveforms 
introduced for the simple TaylorF2 model in [6] and later created for more sophisticated 
SEOBNR and IMRPhenomP models [10]. These methods also result in a large acceleration of 
PE, by factors of 70 for a TaylorF2 waveform [9] or 300 for IMRPhenomPv2 [10] from 20 Hz. 
The two methods are conceptually similar in that the number of points in frequency at which 
the waveform is evaluated is reduced. However, for ROQ the interpolation makes use of a dif-
ferent set of bases, which means that interpolation must be performed across the parameter 
space of the signals in addition to interpolation in frequency. Unlike our MB-Interpolation 
method, this requires significant setup costs to create the parameter space interpolants, which 
are difficult to produce for the higher dimensional precessing spin parameter space. In this 
regard our method is more flexible, since it can be used for any signal without pre-computing 
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a reduced order model. This is advantageous in the case of models which include additional 
physical parameters, such as neutron star tidal deformability, which further increase the 
dimensionality of the parameter space. The MB-Interpolation method can also be used in 
combination with ROQ, where the MB-Interpolation is used to accelerate the initial creation 
of the ROQ model by reducing the number of calculations and also the memory overhead. 
Indeed, the reduced frequency basis idea was used in [10], but without the interpolation up-
sampling step.

Accelerated waveform generation techniques such as the one we have developed here are 
likely to be essential in future, as the detectors evolve toward greater sensitivity at low fre-
quencies. Third-generation detectors such as the Einstein Telescope [4] or LIGO Voyager [35] 
will be sensitive down to a few Hz, meaning signals may be in band for hours or longer. The 
same MB-Interpolation procedure can also be applied to GW studies in the context of space 
missions [16], and in particular for phase-coherent modeling of the signal in both space-based 
and ground-based detectors as would be useful for joint science exploitation [36, 37].

In principle, a similar multi-banding approach could also be applied to time-domain wave-
forms, which could be sampled at a lower rate earlier in the waveform. However, the time 
domain waveforms of greatest interest use numerical integration of the waveform with an 
adaptive step size in time. This prevents a great speedup from being obtained as one cannot 
reduce the step size arbitrarily in the simple way we could for the frequency domain wave-
forms. This factor, in addition to the technical difficulty of efficiently reconstructing the FFT 
of a non-uniformly sampled time series prevented us from exploring this option in the current 
work.

Finally we note that despite the specialisation to gravitational wave analysis, the same 
technique of adapting the sampling interval could be applied to any area where the signal 
frequency changes monotonically with time.
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