183 research outputs found
Deciphering animal development through proteomics: requirements and prospects
In recent years proteomic techniques have started to become very useful tools in a variety of model systems of developmental biology. Applications cover many different aspects of development, including the characterization of changes in the proteome during early embryonic stages. During early animal development the embryo becomes patterned through the temporally and spatially controlled activation of distinct sets of genes. Patterning information is then translated, from gastrulation onwards, into regional specific morphogenetic cell and tissue movements that give the embryo its characteristic shape. On the molecular level, patterning is the outcome of intercellular communication via signaling molecules and the local activation or repression of transcription factors. Genetic approaches have been used very successfully to elucidate the processes behind these events. Morphogenetic movements, on the other hand, have to be orchestrated through regional changes in the mechanical properties of cells. The molecular mechanisms that govern these changes have remained much more elusive, at least in part due to the fact that they are more under translational/posttranslational control than patterning events. However, recent studies indicate that proteomic approaches can provide the means to finally unravel the mechanisms that link patterning to the generation of embryonic form. To intensify research in this direction will require close collaboration between proteome scientists and developmental researchers. It is with this aim in mind that we first give an outline of the classical questions of patterning and morphogenesis. We then summarize the proteomic approaches that have been applied in developmental model systems and describe the pioneering studies that have been done to study morphogenesis. Finally we discuss current and future strategies that will allow characterizing the changes in the embryonic proteome and ultimately lead to a deeper understanding of the cellular mechanisms that govern the generation of embryonic form
Protein kinase CK2 is widely expressed in follicular, Burkitt and diffuse large B-cell lymphomas and propels malignant B-cell growth.
Serine-threonine kinase CK2 is highly expressed and pivotal for survival and proliferation in multiple myeloma, chronic lymphocytic leukemia and mantle cell lymphoma. Here, we investigated the expression of \u3b1 catalytic and \u3b2 regulatory CK2 subunits by immunohistochemistry in 57 follicular (FL), 18 Burkitt (BL), 52 diffuse large B-cell (DLBCL) non-Hodgkin lymphomas (NHL) and in normal reactive follicles. In silico evaluation of available Gene Expression Profile (GEP) data sets from patients and Western blot (WB) analysis in NHL cell-lines were also performed. Moreover, the novel, clinical-grade, ATP-competitive CK2-inhibitor CX-4945 (Silmitasertib) was assayed on lymphoma cells. CK2 was detected in 98.4% of cases with a trend towards a stronger CK2\u3b1 immunostain in BL compared to FL and DLBCL. No significant differences were observed between Germinal Center B (GCB) and non-GCB DLBCL types. GEP data and WB confirmed elevated CK2 mRNA and protein levels as well as active phosphorylation of specific targets in NHL cells. CX-4945 caused a dose-dependent growth-arresting effect on GCB, non-GCB DLBCL and BL cell-lines and it efficiently shut off phosphorylation of NF-\u3baB RelA and CDC37 on CK2 target sites. Thus, CK2 is highly expressed and could represent a suitable therapeutic target in BL, FL and DLBCL NHL
Ki67 as a Predictor of Response to PARP Inhibitors in Platinum Sensitive BRCA Wild Type Ovarian Cancer: The MITO 37 Retrospective Study.
There is compelling need for novel biomarkers to predict response to PARP inhibitors (PARPi) in BRCA wild-type (WT) ovarian cancer (OC).
MITO 37 is a multicenter retrospective study aiming at correlating Ki67 expression at diagnosis with a clinical outcome following platinum treatment and PARPi maintenance. Clinical data were collected from high grade serous or endometroid BRCAWT OC treated with niraparib or rucaparib maintenance between 2010-2021 in 15 centers. Ki67 expression was assessed locally by certified pathologists on formalin-fixed paraffin embedded (FFPE) tissues. Median Ki67 was used as a cut-off.
A total of 136 patients were eligible and included in the analysis. Median Ki67 was 45.7% (range 1.0-99.9). The best response to platinum according to median Ki67 was 26.5% vs. 39.7% complete response (CR), 69.1% vs. 58.8% partial response (PR), 4.4% vs. 1.5% stable disease (SD). The best response to PARPi according to median Ki67 was 19.1% vs. 36.8% CR, 26.5% vs. 26.5% PR, 26.5 vs. 25% SD, 27.9% vs. 16.2% progressive disease (PD). No statistically significant differences in progression free survival (PFS) and overall survival (OS) were identified between low and high Ki67. PFS and OS are in line with registration trials.
Ki67 at diagnosis did not discriminate responders to PARPi
Ki67 as a Predictor of Response to PARP Inhibitors in Platinum Sensitive BRCA Wild Type Ovarian Cancer: The MITO 37 Retrospective Study
Background: There is compelling need for novel biomarkers to predict response to PARP inhibitors (PARPi) in BRCA wild-type (WT) ovarian cancer (OC). Methods: MITO 37 is a multicenter retrospective study aiming at correlating Ki67 expression at diagnosis with a clinical outcome following platinum treatment and PARPi maintenance. Clinical data were collected from high grade serous or endometroid BRCAWT OC treated with niraparib or rucaparib maintenance between 2010–2021 in 15 centers. Ki67 expression was assessed locally by certified pathologists on formalin-fixed paraffin embedded (FFPE) tissues. Median Ki67 was used as a cut-off. Results: A total of 136 patients were eligible and included in the analysis. Median Ki67 was 45.7% (range 1.0–99.9). The best response to platinum according to median Ki67 was 26.5% vs. 39.7% complete response (CR), 69.1% vs. 58.8% partial response (PR), 4.4% vs. 1.5% stable disease (SD). The best response to PARPi according to median Ki67 was 19.1% vs. 36.8% CR, 26.5% vs. 26.5% PR, 26.5 vs. 25% SD, 27.9% vs. 16.2% progressive disease (PD). No statistically significant differences in progression free survival (PFS) and overall survival (OS) were identified between low and high Ki67. PFS and OS are in line with registration trials. Conclusions: Ki67 at diagnosis did not discriminate responders to PARPi
Early invasive vulvar squamous cell carcinoma arising in a woman with vulvar pemphigus vulgaris and systemic lupus erythematosus
Pemphigus vulgaris (PV) is an autoimmune blistering disease of the skin and mucous membranes. Genital involvement occurs when most other common sites are concurrently affected or are in remission. Systemic lupus erythematosus (SLE) is an autoimmune disease that may affect many parts of the body and the skin with occasional bullous lesions. Pemphigus vulgaris and SLE may be associated, albeit rarely. Here, we report the first case of a woman affected with SLE presenting with early invasive squamous cell carcinoma (SCC) arising from Pemphigus Vulgaris of the vulva
Actomyosin-Dependent Cortical Dynamics Contributes to the Prophase Force-Balance in the Early Drosophila Embryo
embryo mitotic spindle during prophase depends upon a balance of outward forces generated by cortical dynein and inward forces generated by kinesin-14 and nuclear elasticity. Myosin II is known to contribute to the dynamics of the cell cortex but how this influences the prophase force-balance is unclear. mutants displaying abnormally small actin caps but normal prophase spindle length in late prophase, myosin II inhibition produced very short spindles.These results suggest that two complementary outward forces are exerted on the prophase spindle by the overlying cortex. Specifically, dynein localized on the mechanically firm actin caps and the actomyosin-driven contraction of the deformable soft patches of the actin cortex, cooperate to pull astral microtubules outward. Thus, myosin II controls the size and dynamic properties of the actin-based cortex to influence the spacing of the poles of the underlying spindle during prophase
The small GTPase RhoU lays downstream of JAK/STAT signaling and mediates cell migration in multiple myeloma
Multiple myeloma is a post-germinal center B-cell neoplasm, characterized by the proliferation of malignant bone marrow plasma cells, whose survival and proliferation is sustained by growth factors and cytokines present in the bone marrow microenvironment. Among them, IL-6 triggers the signal downstream of its receptor, leading to the activation of the JAK/STAT pathway. The atypical GTPase RhoU lays downstream of STAT3 transcription factor and could be responsible for mediating its effects on cytoskeleton dynamics. Here we demonstrate that RHOU is heterogeneously expressed in primary multiple myeloma cells and significantly modulated with disease progression. At the mRNA level, RHOU expression in myeloma patients correlated with the expression of STAT3 and its targets MIR21 and SOCS3. Also, IL-6 stimulation of human myeloma cell lines up-regulated RHOU through STAT3 activation. On the other hand, RhoU silencing led to a decrease in cell migration with the accumulation of actin stress fibers, together with a decrease in cyclin D2 expression and in cell cycle progression. Furthermore, we found that even though lenalidomide positively regulated RhoU expression leading to higher cell migration rates, it actually led to cell cycle arrest probably through a p21 dependent mechanism. Lenalidomide treatment in combination with RhoU silencing determined a loss of cytoskeletal organization inhibiting cell migration, and a further increase in the percentage of cells in a resting phase. These results unravel a role for RhoU not only in regulating the migratory features of malignant plasma cells, but also in controlling cell cycle progression
How can we treat vulvar carcinoma in pregnancy? A systematic review of the literature
According to our systematic literature review (PRISMA guidelines), only 37 vulvar squamous cell carcinomas (VSCCs) were diagnosed during pregnancy (age range: 17\u201341 years). The tumor size range was 0.3\u201315 cm. The treatment was performed after (14/37, 38%), before (10/37, 27%), or before\u2010and\u2010after delivery (11/37, 30%). We found that 21/37 (57%) cases were stage I, 2 II (5%), 11 III (30%), and 3 IVB (8%). HPV\u2010related features (condylomas/warts; HPV infection; high\u2010grade squamous intraepithelial lesion) were reported in 11/37 (30%) cases. We also found that 9/37 (24%) patients had inflammatory conditions (lichen sclerosus/planus, psoriasis, chronic dermatitis). The time\u2010to\u2010recurrence/progression (12/37, 32%) ranged from 0 to 36 (mean 9) months. Eight women died of disease (22%) 2.5\u201348 months after diagnosis, 2 (5%) were alive with disease, and 23 (62%) were disease\u2010free at the end of follow\u2010up. Pregnant patients must be followed\u2010up. Even if they are small, newly arising vulvar lesions should be biopsied, especially in women with risk factors (HPV, dermatosis, etc.). The treatment of VSCCs diagnosed in late third trimester might be delayed until postpartum. Elective cesarean section may prevent vulvar wound dehiscence. In the few reported cases, pregnancy/fetal outcomes seemed to not be affected by invasive treatments during pregnancy. However, clinicians must be careful; larger cohorts should define the best treatment. Definite guidelines are lacking, so a multidisciplinary approach and discussion with patients are mandatory
Therapeutic targeting of CK2 in acute and chronic leukemias
Phosphorylation can regulate almost every property of a protein and is involved in all fundamental cellular processes. Thus, proper regulation of phosphorylation events is critical to the homeostatic functions of cell signaling. Indeed, deregulation of signaling pathways underlies many human diseases, including cancer.[1] The importance of phosphorylation makes protein kinases and phosphatases promising therapeutic targets for a wide variety of disorders.[2] CK2, formerly known as casein kinase II, was discovered in 1954, [3] although only recently, and especially over the last two decades, it has become one of the most studied protein kinases, due to its ubiquity, pleiotropy and constitutive activity. In particular, appreciation of its pleiotropy has completely changed our vision of CK2 biology, from an ordinary cell homeostasis-maintaining enzyme to a master kinase potentially implicated in many human physiological and pathological events. CK2 is responsible for about 25% of the phosphoproteome,[4] as it catalyzes the phosphorylation of >300 substrates.[5] This partly explains the CK2 interconnected roles that underlie its involvement in many signaling pathways. However, CK2 prevalent roles are promotion of cell growth and suppression of apoptosis. Accordingly, several lines of evidence support the notion that CK2 is a key player in the pathogenesis of cancer. High levels of CK2 transcript and protein expression, as well as increased kinase activity are associated with the pathological functions of CK2 in a number of neoplasias.[6] It was only over the last decade, after extensive analyses in solid tumors, that basic and translational studies have provided evidence for a pivotal role of CK2 in driving the growth of different blood cancers as well, although the first report demonstrating increased CK2 expression in acute myelogenous leukemia (AML) dates back to 1985.[7] Since then, CK2 overexpression/activity has been demonstrated in other hematological malignancies, including acute lymphoblastic leukemia (ALL), chronic lymphocytic leukemia (CLL) and chronic myelogenous leukemia (CML). [8] With the notable exceptions of CML and pediatric ALL, many patients with leukemias still have a poor outcome, despite the development of protocols with optimized chemotherapy combinations. Insufficient response to first-line therapy and unsalvageable relapses present major therapeutic challenges. Moreover, chemotherapy, even if successful, could have deleterious long-term biological and psychological effects, especially in children.[9] Furthermore, CML patients can develop resistance to tyrosine kinase inhibitors (TKIs), while both primary chemoresistant and relapsed pediatric ALL cases still remain an unresolved issue.[9
- …