162 research outputs found

    Non-linear frequency and amplitude modulation of a nano-contact spin torque oscillator

    Full text link
    We study the current controlled modulation of a nano-contact spin torque oscillator. Three principally different cases of frequency non-linearity (d2f/dIdc2d^{2}f/dI^{2}_{dc} being zero, positive, and negative) are investigated. Standard non-linear frequency modulation theory is able to accurately describe the frequency shifts during modulation. However, the power of the modulated sidebands only agrees with calculations based on a recent theory of combined non-linear frequency and amplitude modulation.Comment: 4 pages, 4 figure

    Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts

    Full text link
    Through detailed experimental studies of the angular dependence of spin wave excitations in nanocontact-based spin-torque oscillators, we demonstrate that two distinct spin wave modes can be excited, with different frequency, threshold currents and frequency tuneability. Using analytical theory and micromagnetic simulations we identify one mode as an exchange-dominated propagating spin wave, and the other as a self-localized nonlinear spin wave bullet. Wavelet-based analysis of the simulations indicates that the apparent simultaneous excitation of both modes results from rapid mode hopping induced by the Oersted field.Comment: 5 pages, 3 figure

    Frequency modulation of spin torque oscillator pairs

    Full text link
    The current controlled modulation of nano-contact based spin torque oscillator (STO) pairs is studied in both the synchronized and non-synchronized states. The synchronized state shows a well behaved modulation and demonstrates robust mutual locking even under strong modulation. The power distribution of the modulation sidebands can be quantitatively described by assuming a single oscillator model. However, in the non-synchronized state, the modulation sidebands are not well described by the model, indicating interactions between the two individual nano-contact STOs. These findings are promising for potential applications requiring the modulation of large synchronized STO arrays

    Spin and orbital effects in a 2D electron gas in a random magnetic field

    Full text link
    Using the method of superbosonization we consider a model of a random magnetic field (RMF) acting on both orbital motion and spin of electrons in two dimensions. The method is based on exact integration over one particle degrees of freedom and reduction of the problem to a functional integral over supermatrices Q(r,r)Q({\bf r},{\bf r^{\prime}}). We consider a general case when both the direction of the RMF and the g-factor of the Zeeman splitting are arbitrary. Integrating out fast variations of QQ we come to a standard collisional unitary non-linear σ\sigma-model. The collision term consists of orbital, spin and effective spin-orbital parts. For a particular problem of a fixed direction of RMF, we show that additional soft excitations identified with spin modes should appear. Considering δ\delta % -correlated weak RMF and putting g=2 we find the transport time τtr\tau_{tr} . This time is 2 times smaller than that for spinless particles.Comment: 9 pages, no figure

    Power and linewidth of propagating and localized modes in nanocontact spin-torque oscillators

    Full text link
    Integrated power and linewidth of a propagating and a self-localized spin wave modes excited by spin-polarized current in an obliquely magnetized magnetic nanocontact are studied experimentally as functions of the angle θe\theta_e between the external bias magnetic field and the nanocontact plane. It is found that the power of the propagating mode monotonically increases with θe\theta_e, while the power of the self-localized mode has a broad maximum near θe=40\theta_e = 40 deg, and exponentially vanishes near the critical angle θe=58\theta_e = 58 deg, at which the localized mode disappears. The linewidth of the propagating mode in the interval of angles 58<θe<9058<\theta_e<90 deg, where only this mode is excited, is adequtely described by the existing theory, while in the angular interval where both modes can exist the observed linewidth of both modes is substantially broadened due to the telegraph switching between the modes. Numetical simulations and an approximate analytical model give good semi-quantitative description of the observed results.Comment: 8 pages, 6 figure

    Synchronization of spin-torque driven nanooscillators for point contacts on a quasi-1D nanowire: Micromagnetic simulations

    Full text link
    In this paper we present detailed numerical simulation studies on the synchronization of two spin-torque nanooscillators (STNO) in the quasi-1D geometry: magnetization oscillations are induced in a thin NiFe nanostripe by a spin polarized current injected via square-shaped CoFe nanomagnets on the top of this stripe. In a sufficiently large out-of-plane field, a propagating oscillation mode appears in such a system. Due to the absence of the geometrically caused wave decay in 1D systems, this mode is expected to enable a long-distance synchronization between STNOs. Indeed, our simulations predict that synchronization of two STNOs on a nanowire is possible up to the intercontact distance 3 mkm (for the nanowire width 50 nm). However, we have also found several qualitatively new features of the synchronization behaviour for this system, which make the achievement of a stable synchronization in this geometry to a highly non-trivial task. In particular, there exist a minimal distance between the nanocontacts, below which a synchronization of STNOs can not be achieved. Further, when the current value in the first contact is kept constant, the amplitude of synchronized oscillations depends non-monotonously on the current value in the second contact. Finally, for one and the same currents values through the contacts there might exist several synchronized states (with different frequencies), depending on the initial conditions.Comment: 13 pages with 4 figurews, recently submitted to PR

    Preparation and structural properties of thin films and multilayers of the Heusler compounds Cu2MnAl, Co2MnSn, Co2MnSi and Co2MnGe

    Full text link
    We report on the preparation of thin films and multilayers of the intermetallic Heusler compound CuMnAl, Co2MnSn, Co2MnSi and Co2MnGe by rf-sputtering on MgO and Al2O3 substrates. Cu2MnAl can be grown epitaxially with (100)-orientation on MgO (100) and in (110)-orientation on Al2O3 a-plane. The Co based Heusler alloys need metallic seedlayers to induce high quality textured growth. We also have prepared multilayers with smooth interfaces by combining the Heusler compounds with Au and V. An analysis of the ferromagnetic saturation magnetization of the films indicates that the Cu2MnAl-compound tends to grow in the disordered B2-type structure whereas the Co-based Heusler alloy thin films grow in the ordered L21 structure. All multilayers with thin layers of the Heusler compounds exhibit a definitely reduced ferromagnetic magnetization indicating substantial disorder and intermixing at the interfaces.Comment: 21 pages, 8 figure

    Current-driven excitations in magnetic multilayers: a brief review

    Full text link
    In 1996, Berger and Slonczewski independently predicted that a large enough spin-polarized dc current density sent perpendicularly through a ferromagnetic layer could produce magnetic excitations (spin-waves) or reversal of magnetization (switching). In the past few years, both current-driven switching and current-driven excitation of spin-waves have been observed. The switching is of potential technological interest for direct 'writing' of magnetic random access memory (MRAM) or magnetic media. The spin-wave generation could provide a new source of dc generated microwave radiation. We describe what has been learned experimentally about these two related phenomena, and some models being tested to explain these observations.Comment: 5 pages, 7 figures, expected to appear in conf. proceeding

    Anisotropic magnetoresistance in a 2DEG in a quasi-random magnetic field

    Full text link
    We present magnetotransport results for a 2D electron gas (2DEG) subject to the quasi-random magnetic field produced by randomly positioned sub-micron Co dots deposited onto the surface of a GaAs/AlGaAs heterostructure. We observe strong local and non-local anisotropic magnetoresistance for external magnetic fields in the plane of the 2DEG. Monte-Carlo calculations confirm that this is due to the changing topology of the quasi-random magnetic field in which electrons are guided predominantly along contours of zero magnetic field.Comment: 4 pages, 6 figures, submitted to Phys. Rev.

    Magnetic Cellular Nonlinear Network with Spin Wave Bus for Image Processing

    Full text link
    We describe and analyze a cellular nonlinear network based on magnetic nanostructures for image processing. The network consists of magneto-electric cells integrated onto a common ferromagnetic film - spin wave bus. The magneto-electric cell is an artificial two-phase multiferroic structure comprising piezoelectric and ferromagnetic materials. A bit of information is assigned to the cell's magnetic polarization, which can be controlled by the applied voltage. The information exchange among the cells is via the spin waves propagating in the spin wave bus. Each cell changes its state as a combined effect of two: the magneto-electric coupling and the interaction with the spin waves. The distinct feature of the network with spin wave bus is the ability to control the inter-cell communication by an external global parameter - magnetic field. The latter makes possible to realize different image processing functions on the same template without rewiring or reconfiguration. We present the results of numerical simulations illustrating image filtering, erosion, dilation, horizontal and vertical line detection, inversion and edge detection accomplished on one template by the proper choice of the strength and direction of the external magnetic field. We also present numerical assets on the major network parameters such as cell density, power dissipation and functional throughput, and compare them with the parameters projected for other nano-architectures such as CMOL-CrossNet, Quantum Dot Cellular Automata, and Quantum Dot Image Processor. Potentially, the utilization of spin waves phenomena at the nanometer scale may provide a route to low-power consuming and functional logic circuits for special task data processing
    corecore