30 research outputs found

    Synchrotron radiation induced chemical vapor deposition of thin films from metal hexacarbonyls*

    Get PDF
    We have studied the initial stages of synchrotron radiation [SR] induced chemical vapor deposition [CVD] of metal-containing thin films from metal hexacarbonyl gases. We have measured the dependence of the initial deposition rate upon gas pressure at room temperature. Substrates were exposed to SR for single fills of the electron storage ring at constant pressure of Mo(CO)6, Cr(CO)6, or W(CO) 6 gas. Deposition was monitored in situ by Auger electron spectroscopy using the SW as the excitation source. The presence of metal, carbon, and oxygen in the deposited films was observed, and the results are consistent with previous studies. Deposition was found to be isolated to areas of the substrate exposed to the SR beam. We discuss these results as they relate to the use of SR as a means to induce GVD and the possibility of patterned deposition using a masked SR source

    X-Ray Lithography of Metal and Semiconductor Nanoparticles

    Get PDF
    In the last few years, a considerable amount of research has focused on the three-dimensional fabrication of contacts and electronic devices. Most techniques, however, are essentially based on photoreduction, and are limited to noble- and semi-noble metals. We present here a general method that allows patterning of porous matrices in 3D with metal, but also with semiconductor nanoparticles which is of potential relevance for microfabrication applications. In our method, the pore-filling solvent of a sol-gel material is exchanged with a solution of precursors. The precursors are photodissociated and nanoparticles are formed when the monoliths are irradiated. In a series of previous publications we showed that noble metals but also semiconductor quantum dots can be produced with our technique. Here we focus on the Xray variation of our technique and show that monoliths can be patterned with metals and also with semiconductor nanoparticles. The patterns have the same resolution than the masks, i.e., around 10 μm, and extend into the bulk of the monoliths for up to a depth of 12 mm. Our method possesses several attractive features. Sample preparation is very simple; the technique has a bottom-up character; it allows access to a wide number of materials, such as noble metals and II-VI semiconductor materials; and it has a 3D character. With additional developments, our technique could be possibly used to complement more established techniques such as LIGA and multiphoton fabrication techniques which are currently used for 3D microfabrication

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Future Hard X-ray Nanoprobe at the Advanced Photon Source

    No full text

    Design of a compact varied-line space grating monochromator for enhanced flux at MAXLAB

    No full text
    For soft x-ray fluorescence spectroscopy with selective energy excitation, it is desirable to have maximum flux at moderate resolution. A plane grating monochromator with varied line spacing can be used in the convergent beam of an ellipsoidal focusing mirror to provide moderate resolution with a large collection angle and minimum number of reflecting surfaces. We determine the design parameters for a varied-line-space grating monochromator to provide light in the 200-1000 eV range. The results of modeling are discussed with respect to the optimal choices of monochromator for our experimental requirements. A novel mechanical design is proposed for constructing the monochromator in a compact form with the minimum number of moving parts and alignments
    corecore