159 research outputs found
Energy benchmarks for water clusters and ice structures from an embedded many-body expansion
We show how an embedded many-body expansion (EMBE) can be used to calculate
accurate \emph{ab initio} energies of water clusters and ice structures using
wavefunction-based methods. We use the EMBE described recently by Bygrave
\emph{et al.} (J. Chem. Phys. \textbf{137}, 164102 (2012)), in which the terms
in the expansion are obtained from calculations on monomers, dimers, etc. acted
on by an approximate representation of the embedding field due to all other
molecules in the system, this field being a sum of Coulomb and
exchange-repulsion fields. Our strategy is to separate the total energy of the
system into Hartree-Fock and correlation parts, using the EMBE only for the
correlation energy, with the Hartree-Fock energy calculated using standard
molecular quantum chemistry for clusters and plane-wave methods for crystals.
Our tests on a range of different water clusters up to the 16-mer show that for
the second-order M\o{}ller-Plesset (MP2) method the EMBE truncated at 2-body
level reproduces to better than 0.1 m/monomer the correlation energy
from standard methods. The use of EMBE for computing coupled-cluster energies
of clusters is also discussed. For the ice structures Ih, II and VIII, we find
that MP2 energies near the complete basis-set limit reproduce very well the
experimental values of the absolute and relative binding energies, but that the
use of coupled-cluster methods for many-body correlation (non-additive
dispersion) is essential for a full description. Possible future applications
of the EMBE approach are suggested
Bulk and surface energetics of lithium hydride crystal: benchmarks from quantum Monte Carlo and quantum chemistry
We show how accurate benchmark values of the surface formation energy of
crystalline lithium hydride can be computed by the complementary techniques of
quantum Monte Carlo (QMC) and wavefunction-based molecular quantum chemistry.
To demonstrate the high accuracy of the QMC techniques, we present a detailed
study of the energetics of the bulk LiH crystal, using both pseudopotential and
all-electron approaches. We show that the equilibrium lattice parameter agrees
with experiment to within 0.03 %, which is around the experimental uncertainty,
and the cohesive energy agrees to within around 10 meV per formula unit. QMC in
periodic slab geometry is used to compute the formation energy of the LiH (001)
surface, and we show that the value can be accurately converged with respect to
slab thickness and other technical parameters. The quantum chemistry
calculations build on the recently developed hierarchical scheme for computing
the correlation energy of a crystal to high precision. We show that the
hierarchical scheme allows the accurate calculation of the surface formation
energy, and we present results that are well converged with respect to basis
set and with respect to the level of correlation treatment. The QMC and
hierarchical results for the surface formation energy agree to within about 1
%.Comment: 16 pages, 4 figure
Anomalous molecular dynamics in the vicinity of conical intersections
Conical intersections between molecular electronic potential surfaces greatly
affect various properties of the molecule. Molecular gauge theory is capable of
explaining many of these often unexpected phenomena deriving from the physics
of the conical intersection. Here we give an example of anomalous dynamics in
the paradigm of the Exe Jahn-Teller model, which does not allow a simple
explenation in terms of standard molecular gauge theory. By introducing a dual
gauge theory, we unwind this surprising behavior by identifying it with an
intrinsic spin Hall effect. Thus, this work link knowledge of condensed matter
theories with molecular vibrations. Furthermore, via ab initio calculations the
findings are as well demonstrated to appear in realistic systems such as the
Li3 molecule.Comment: 5 pages, 2 figure
Postoperative outcomes in oesophagectomy with trainee involvement
BACKGROUND: The complexity of oesophageal surgery and the significant risk of morbidity necessitates that oesophagectomy is predominantly performed by a consultant surgeon, or a senior trainee under their supervision. The aim of this study was to determine the impact of trainee involvement in oesophagectomy on postoperative outcomes in an international multicentre setting. METHODS: Data from the multicentre Oesophago-Gastric Anastomosis Study Group (OGAA) cohort study were analysed, which comprised prospectively collected data from patients undergoing oesophagectomy for oesophageal cancer between April 2018 and December 2018. Procedures were grouped by the level of trainee involvement, and univariable and multivariable analyses were performed to compare patient outcomes across groups. RESULTS: Of 2232 oesophagectomies from 137 centres in 41 countries, trainees were involved in 29.1 per cent of them (n = 650), performing only the abdominal phase in 230, only the chest and/or neck phases in 130, and all phases in 315 procedures. For procedures with a chest anastomosis, those with trainee involvement had similar 90-day mortality, complication and reoperation rates to consultant-performed oesophagectomies (P = 0.451, P = 0.318, and P = 0.382, respectively), while anastomotic leak rates were significantly lower in the trainee groups (P = 0.030). Procedures with a neck anastomosis had equivalent complication, anastomotic leak, and reoperation rates (P = 0.150, P = 0.430, and P = 0.632, respectively) in trainee-involved versus consultant-performed oesophagectomies, with significantly lower 90-day mortality in the trainee groups (P = 0.005). CONCLUSION: Trainee involvement was not found to be associated with significantly inferior postoperative outcomes for selected patients undergoing oesophagectomy. The results support continued supervised trainee involvement in oesophageal cancer surgery
Nature documentaries as catalysts for change: Mapping out the 'Blackfish Effect'
It is essential for us to understand what drives human behaviour if we want to tackle anthropogenic damage to the environment. Popular media can play an important role in shaping public attitudes, behaviours and norms towards wildlife, and documentaries in particular have become an increasingly prominent tool for social change. There is, however, a need for robust impact evaluation both in documentary-making and in conservation, to refine future interventions. The 2013 documentary Blackfish portrayed human–orca interactions at the US-based marine park, SeaWorld. Following its release, SeaWorld suffered financial difficulties and the company underwent structural changes, including a cessation of its orca breeding programme. These impacts have often been attributed to the Blackfish documentary, but little evidence has been provided to justify these claims. We combined an analysis of stock market data and semi-structured interviews with 26 key informants to build an in-depth contribution analysis. We used General Elimination Methodology, a qualitative impact evaluation methodology to build an understanding of the impact of Blackfish. We found a consensus among stakeholder groups that Blackfish induced negative publicity for SeaWorld and a change in people's perceptions of captivity. As a result, attendance at the park decreased and the market value of the company dropped. Blackfish catalysed a whole movement against marine mammal captivity. There were three key factors that led to its impact: the support from major distribution channels which allowed it to reach major audiences, emotional impact of the content and timing of its release. Blackfish benefitted from a perfect storm, building upon decades of activism to create an appropriate cultural climate for its release in 2013
Recommended from our members
PANC Study (Pancreatitis: A National Cohort Study): national cohort study examining the first 30 days from presentation of acute pancreatitis in the UK
Background
Acute pancreatitis is a common, yet complex, emergency surgical presentation. Multiple guidelines exist and management can vary significantly. The aim of this first UK, multicentre, prospective cohort study was to assess the variation in management of acute pancreatitis to guide resource planning and optimize treatment.
Methods
All patients aged greater than or equal to 18 years presenting with acute pancreatitis, as per the Atlanta criteria, from March to April 2021 were eligible for inclusion and followed up for 30 days. Anonymized data were uploaded to a secure electronic database in line with local governance approvals.
Results
A total of 113 hospitals contributed data on 2580 patients, with an equal sex distribution and a mean age of 57 years. The aetiology was gallstones in 50.6 per cent, with idiopathic the next most common (22.4 per cent). In addition to the 7.6 per cent with a diagnosis of chronic pancreatitis, 20.1 per cent of patients had a previous episode of acute pancreatitis. One in 20 patients were classed as having severe pancreatitis, as per the Atlanta criteria. The overall mortality rate was 2.3 per cent at 30 days, but rose to one in three in the severe group. Predictors of death included male sex, increased age, and frailty; previous acute pancreatitis and gallstones as aetiologies were protective. Smoking status and body mass index did not affect death.
Conclusion
Most patients presenting with acute pancreatitis have a mild, self-limiting disease. Rates of patients with idiopathic pancreatitis are high. Recurrent attacks of pancreatitis are common, but are likely to have reduced risk of death on subsequent admissions
Poisson Equation in the Kohn-Sham Coulomb Problem
We apply the Poisson equation to the quantum mechanical Coulomb problem for many-particle systems. By introducing a suitable basis set, the two-electron Coulomb integrals become simple overlaps. This offers the possibility of very rapid linear-scaling treatment of the Coulomb contribution to Kohn-Sham theory
- …