3,291 research outputs found

    Relation between the separable and one-boson-exchange potential for the covariant Bethe-Salpeter equation

    Full text link
    We investigate the relation between the rank I separable potential for the covariant Bethe-Salpeter equation and the one-boson-exchange potential. After several trials of the parameter choices, it turns out that it is not always possible to reproduce the phase-shifts calculated from a single term of the one-boson-exchange potential especially of the σ\sigma-exchange term, separately by the rank I separable potential. Instead, it is shown that the separable potential is useful to parameterize the total nucleon-nucleon interaction.Comment: 10 pages, 8 figures, to appear in J.Phys.

    Destabilization of the thermohaline circulation by transient perturbations to the hydrological cycle

    Full text link
    We reconsider the problem of the stability of the thermohaline circulation as described by a two-dimensional Boussinesq model with mixed boundary conditions. We determine how the stability properties of the system depend on the intensity of the hydrological cycle. We define a two-dimensional parameters' space descriptive of the hydrology of the system and determine, by considering suitable quasi-static perturbations, a bounded region where multiple equilibria of the system are realized. We then focus on how the response of the system to finite-amplitude surface freshwater forcings depends on their rate of increase. We show that it is possible to define a robust separation between slow and fast regimes of forcing. Such separation is obtained by singling out an estimate of the critical growth rate for the anomalous forcing, which can be related to the characteristic advective time scale of the system.Comment: 37 pages, 8 figures, submitted to Clim. Dy

    An initial intercomparison of atmospheric and oceanic climatology for the ICE-5G and ICE-4G models of LGM paleotopography

    Get PDF
    This paper investigates the impact of the new ICE-5G paleotopography dataset for Last Glacial Maximum (LGM) conditions on a coupled model simulation of the thermal and dynamical state of the glacial atmosphere and on both land surface and sea surface conditions. The study is based upon coupled climate simulations performed with the ocean–atmosphere–sea ice model of intermediate-complexity Climate de Bilt-coupled large-scale ice–ocean (ECBilt-Clio) model. Four simulations focusing on the Last Glacial Maximum [21 000 calendar years before present (BP)] have been analyzed: a first simulation (LGM-4G) that employed the original ICE-4G ice sheet topography and albedo, and a second simulation (LGM-5G) that employed the newly constructed ice sheet topography, denoted ICE-5G, and its respective albedo. Intercomparison of the results obtained in these experiments demonstrates that the LGM-5G simulation delivers significantly enhanced cooling over Canada compared to the LGM-4G simulation whereas positive temperature anomalies are simulated over southern North America and the northern Atlantic. Moreover, introduction of the ICE-5G topography is shown to lead to a deceleration of the subtropical westerlies and to the development of an intensified ridge over North America, which has a profound effect upon the hydrological cycle. Additionally, two flat ice sheet experiments were carried out to investigate the impact of the ice sheet albedo on global climate. By comparing these experiments with the full LGM simulations, it becomes evident that the climate anomalies between LGM-5G and LGM-4G are mainly driven by changes of the earth’s topography

    Is Gliese 581d habitable? Some constraints from radiative-convective climate modeling

    Full text link
    The recently discovered exoplanet Gl581d is extremely close to the outer edge of its system's habitable zone, which has led to much speculation on its possible climate. We have performed a range of simulations to assess whether, given simple combinations of chemically stable greenhouse gases, the planet could sustain liquid water on its surface. For best estimates of the surface gravity, surface albedo and cloud coverage, we find that less than 10 bars of CO2 is sufficient to maintain a global mean temperature above the melting point of water. Furthermore, even with the most conservative choices of these parameters, we calculate temperatures above the water melting point for CO2 partial pressures greater than about 40 bar. However, we note that as Gl581d is probably in a tidally resonant orbit, further simulations in 3D are required to test whether such atmospheric conditions are stable against the collapse of CO2 on the surface.Comment: 9 pages, 11 figures. Accepted for publication in Astronomy & Astrophysic

    Structural Critical Scattering Study of Mg-Doped CuGeO3

    Full text link
    We report a synchrotron x-ray scattering study of the diluted spin-Peierls (SP) material Cu_(1-x)Mg_xGeO_3. We find that for x>0 the temperature T_m at which the spin gap is established is significantly higher than the temperature T_s at which the SP dimerization attains long-range order. The latter is observed only for xx_c the SP correlation length quickly decreases with increasing x. We argue that impurity-induced competing interactions play a central role in these phenomena.Comment: 5 pages, 4 embedded eps figures, to appear in PR

    The first-order phase transition between dimerized-antiferromagnetic and uniform-antiferromagnetic phases in Cu_(1-x)M_xGeO_3

    Full text link
    We have performed detailed magnetic susceptibility measurements as well as synchrotron x-ray diffraction studies to determine the temperature vs concentration (TT - xx) phase diagram of Cu1x{}_{1-x}Mgx{}_xGeO3{}_3. We observe clear double peaks in the magnetic susceptibility implying two antiferromagnetic (AF) transition temperatures in samples with Mg concentrations in the range 0.0237 x\le x \le 0.0271. We also observe a drastic change in the inverse correlation length in this concentration range by x-ray diffraction. The drastic change of the AF transition temperature as well as the disappearance of the spin-Peierls (SP) phase have been clarified; these results are consistent with a first-order phase transition between dimerized AF (D-AF) and uniform AF (U-AF) phases as reported by T. Masuda {\it et al.} \lbrack Phys. Rev. Lett. {\bf 80}, 4566 (1998)\rbrack. The TT - xx phase diagram of Cu1x{}_{1-x}Znx{}_xGeO3{}_3 is similar to that of Cu1x{}_{1-x}Mgx{}_xGeO3{}_3, which suggests that the present phase transition is universal for Cu1xMx{}_{1-x}M_{x}GeO3{}_3.Comment: 7 pages, 5 figures. submitted to PR

    Effects of Disorder on the Competition between Antiferromagnetism and Superconductivity

    Full text link
    Motivated by the observation of unusual magnetism in Ce_xCu_2Si_2 (x1x\sim 1), we study the effect of disorder, such as Ce vacancy, on the competition between superconductivity (SC) and antiferromagnetism (AF) on the basis of the phenomenological Ginzburg-Landau theory. Assuming that the AF-SC transition is of first order in clean system, we show that a single impurity in the SC state can induce staggered magnetization by suppressing the SC around it. For finite concentration of impurities, the first-order AF-SC boundary in the clean case is replaced by a finite region where the SC and the induced AF moments coexist microscopically with spatially varying order parameters. We argue that spin excitation spectrum in the coexistent state has a dual structure of SC gapped mode and the low-energy spin-wave mode. In accordance with the emergence of AF out of SC ground state, the spectral weight will be transferred from the former mode to the latter, keeping the structure of both modes basically unchanged.Comment: 5 pages, 1 figure, submitted to J. Phys. Soc. Japa

    Bond-Dilution-Induced Quantum Phase Transitions in Heisenberg Antiferromagnets

    Full text link
    Bond-dilution effects on the ground state of the square-lattice antiferromagnetic Heisenberg model, consisting of coupled bond-alternating chains, are investigated by means of the quantum Monte Carlo simulation. It is found that, when the ground state of the non-diluted system is a non-magnetic state with a finite spin gap, a sufficiently weak bond dilution induces a disordered state with a mid gap in the original spin gap, and under a further stronger bond dilution an antiferromagnetic long-range order emerges. While the site-dilution-induced long-range order is induced by an infinitesimal concentration of dilution, there exists a finite critical concentration in the case of bond dilution. We argue that this essential difference is due to the occurrence of two types of effective interactions between induced magnetic moments in the case of bond dilution, and that the antiferromagnetic long-range-ordered phase does not appear until the magnitudes of the two interactions become comparable.Comment: 7 pages, 13 figure

    Quantal phases, disorder effects and superconductivity in spin-Peierls systems

    Full text link
    In view of recent developments in the investigation on cuprate high-Tc{}_{\rm c} superconductors and the spin-Peierls compound CuGeO3{}_{3}, we study the effect of dilute impurity doping on the spin-Peierls state in quasi-one dimensional systems. We identify a common origin for the emergence of antiferromagnetic order upon the introduction of static vacancies, and superconductivity for mobile holes.Comment: 4 pages revtex; revised versio
    corecore