10 research outputs found

    Human MCTS1-dependent translation of JAK2 is essential for IFN-γ immunity to mycobacteria.

    Get PDF
    Human inherited disorders of interferon-gamma (IFN-γ) immunity underlie severe mycobacterial diseases. We report X-linked recessive MCTS1 deficiency in men with mycobacterial disease from kindreds of different ancestries (from China, Finland, Iran, and Saudi Arabia). Complete deficiency of this translation re-initiation factor impairs the translation of a subset of proteins, including the kinase JAK2 in all cell types tested, including T lymphocytes and phagocytes. JAK2 expression is sufficiently low to impair cellular responses to interleukin-23 (IL-23) and partially IL-12, but not other JAK2-dependent cytokines. Defective responses to IL-23 preferentially impair the production of IFN-γ by innate-like adaptive mucosal-associated invariant T cells (MAIT) and γδ T lymphocytes upon mycobacterial challenge. Surprisingly, the lack of MCTS1-dependent translation re-initiation and ribosome recycling seems to be otherwise physiologically redundant in these patients. These findings suggest that X-linked recessive human MCTS1 deficiency underlies isolated mycobacterial disease by impairing JAK2 translation in innate-like adaptive T lymphocytes, thereby impairing the IL-23-dependent induction of IFN-γ

    Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease

    Get PDF
    STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder

    Potential of rare actinomycetes in the production of metabolites against multiple oxidant agents

    No full text
    Context: Actinobacteria are a precious source of novel bioactive metabolites with potential pharmaceutical applications. Objectives: Representatives of 11 genera of rare Actinobacteria were selected for the evaluation of antioxidant activity. Material and methods: Fermentation broths of the Actinobacteria were extracted and dosage of 10 to 2000 µg/mL were applied for in vitro antioxidant-related bioassays. Cytotoxicity was assessed at the concentration of 2.5–20 µg/mL. Results: In the DPPH scavenging activity, 15 out of 52 extracts showed 17.0–26.8% activity in quantitative evaluation. Metabolites of five prominent antioxidant producing strains protected the DNA (pUC19) against UV-induced photolyzed H2O2-oxidative degradation. The potent antioxidant extracts inhibited two oxidative enzymes of xanthine oxidase in the range of 17.5–45.2% (three extracts had IC50 less than allopurinol) and lipoxygenase in the range of 36–55% (all five extracts had IC50 values less than daidzein). All these extracts could also protect eythrocytes from iron-induced hemolysis with ED50 values in a range of 0.014–1.25 mg/mL. Growth restoration of the yeast cells lacking the sod1 gene was observed by the antioxidant metabolite of Saccharothrix ecbatanensis UTMC 537 at the concentration of 1 mg/mL. Conclusions: The presence of nonidentical metabolites might be responsible for antioxidant and enzyme inhibitory activities of S. ecbatanensis, newly described actinobacterium in family Pseudonocardiaceae. The scavenging of the free electrons, protection of DNA and model yeast cells against oxidative stress, in addition to the inhibition of the oxidating enzymes are the main mechanisms of the antioxidant effect of the introduced resource in this study

    FLT3L governs the development of partially overlapping hematopoietic lineages in humans and mice

    No full text
    International audienceFMS-related tyrosine kinase 3 ligand (FLT3L), encoded by FLT3LG, is a hematopoietic factor essential for the development of natural killer (NK) cells, B cells, and dendritic cells (DCs) in mice. We describe three humans homozygous for a loss-of-function FLT3LG variant with a history of various recurrent infections, including severe cutaneous warts. The patients' bone marrow (BM) was hypoplastic, with low levels of hematopoietic progenitors, particularly myeloid and B cell precursors. Counts of B cells, monocytes, and DCs were low in the patients' blood, whereas the other blood subsets, including NK cells, were affected only moderately, if at all. The patients had normal counts of Langerhans cells (LCs) and dermal macrophages in the skin but lacked dermal DCs. Thus, FLT3L is required for B cell and DC development in mice and humans. However, unlike its murine counterpart, human FLT3L is required for the development of monocytes but not NK cells

    Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency

    No full text
    Inherited CARMIL2 deficiency underlies infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation. CARMIL2 deficiency impairs CD28 signaling only partially in T cells. The comparison of CARMIL2 and CD28 deficiency in humans suggests that CARMIL2 governs immunological pathways beyond CD28. Patients with inherited CARMIL2 or CD28 deficiency have defective T cell CD28 signaling, but their immunological and clinical phenotypes remain largely unknown. We show that only one of three CARMIL2 isoforms is produced and functional across leukocyte subsets. Tested mutant CARMIL2 alleles from 89 patients and 52 families impair canonical NF-kappa B but not AP-1 and NFAT activation in T cells stimulated via CD28. Like CD28-deficient patients, CARMIL2-deficient patients display recalcitrant warts and low blood counts of CD4(+) and CD8(+) memory T cells and CD4(+) T(REG)s. Unlike CD28-deficient patients, they have low counts of NK cells and memory B cells, and their antibody responses are weak. CARMIL2 deficiency is fully penetrant by the age of 10 yr and is characterized by numerous infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation, including inflammatory bowel disease. Patients with somatic reversions of a mutant allele in CD4(+) T cells have milder phenotypes. Our study suggests that CARMIL2 governs immunological pathways beyond CD28

    Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency

    No full text
    International audiencePatients with inherited CARMIL2 or CD28 deficiency have defective T cell CD28 signaling, but their immunological and clinical phenotypes remain largely unknown. We show that only one of three CARMIL2 isoforms is produced and functional across leukocyte subsets. Tested mutant CARMIL2 alleles from 89 patients and 52 families impair canonical NF-κB but not AP-1 and NFAT activation in T cells stimulated via CD28. Like CD28-deficient patients, CARMIL2-deficient patients display recalcitrant warts and low blood counts of CD4 + and CD8 + memory T cells and CD4 + T REG s. Unlike CD28-deficient patients, they have low counts of NK cells and memory B cells, and their antibody responses are weak. CARMIL2 deficiency is fully penetrant by the age of 10 yr and is characterized by numerous infections, EBV + smooth muscle tumors, and mucocutaneous inflammation, including inflammatory bowel disease. Patients with somatic reversions of a mutant allele in CD4 + T cells have milder phenotypes. Our study suggests that CARMIL2 governs immunological pathways beyond CD28

    Autoantibodies against type I IFNs in humans with alternative NF-κB pathway deficiency

    No full text
    : Patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1) caused by autosomal recessive AIRE deficiency produce autoantibodies that neutralize type I interferons (IFNs)1,2, conferring a predisposition to life-threatening COVID-19 pneumonia3. Here we report that patients with autosomal recessive NIK or RELB deficiency, or a specific type of autosomal-dominant NF-κB2 deficiency, also have neutralizing autoantibodies against type I IFNs and are at higher risk of getting life-threatening COVID-19 pneumonia. In patients with autosomal-dominant NF-κB2 deficiency, these autoantibodies are found only in individuals who are heterozygous for variants associated with both transcription (p52 activity) loss of function (LOF) due to impaired p100 processing to generate p52, and regulatory (IκBδ activity) gain of function (GOF) due to the accumulation of unprocessed p100, therefore increasing the inhibitory activity of IκBδ (hereafter, p52LOF/IκBδGOF). By contrast, neutralizing autoantibodies against type I IFNs are not found in individuals who are heterozygous for NFKB2 variants causing haploinsufficiency of p100 and p52 (hereafter, p52LOF/IκBδLOF) or gain-of-function of p52 (hereafter, p52GOF/IκBδLOF). In contrast to patients with APS-1, patients with disorders of NIK, RELB or NF-κB2 have very few tissue-specific autoantibodies. However, their thymuses have an abnormal structure, with few AIRE-expressing medullary thymic epithelial cells. Human inborn errors of the alternative NF-κB pathway impair the development of AIRE-expressing medullary thymic epithelial cells, thereby underlying the production of autoantibodies against type I IFNs and predisposition to viral diseases
    corecore