5,290 research outputs found

    Limits on MeV Dark Matter from the Effective Number of Neutrinos

    Full text link
    Thermal dark matter that couples more strongly to electrons and photons than to neutrinos will heat the electron-photon plasma relative to the neutrino background if it becomes nonrelativistic after the neutrinos decouple from the thermal background. This results in a reduction in N_eff below the standard-model value, a result strongly disfavored by current CMB observations. Taking conservative lower bounds on N_eff and on the decoupling temperature of the neutrinos, we derive a bound on the dark matter particle mass of m_\chi > 3-9 MeV, depending on the spin and statistics of the particle. For p-wave annihilation, our limit on the dark matter particle mass is stronger than the limit derived from distortions to the CMB fluctuation spectrum produced by annihilations near the epoch of recombination.Comment: 5 pages, 1 figure, discussion added, references added and updated, labels added to figure, to appear in Phys. Rev.

    Parametrical optimization of laser surface alloyed NiTi shape memory alloy with Co and Nb by the Taguchi method

    Get PDF
    Different high-purity metal powders were successfully alloyed on to a nickel titanium (NiTi) shape memory alloy (SMA) with a 3 kW carbon dioxide (CO2) laser system. In order to produce an alloyed layer with complete penetration and acceptable composition profile, the Taguchi approach was used as a statistical technique for optimizing selected laser processing parameters. A systematic study of laser power, scanning velocity, and pre-paste powder thickness was conducted. The signal-to-noise ratios (S/N) for each control factor were calculated in order to assess the deviation from the average response. Analysis of variance (ANOVA) was carried out to understand the significance of process variables affecting the process effects. The Taguchi method was able to determine the laser process parameters for the laser surface alloying technique with high statistical accuracy and yield a laser surface alloying technique capable of achieving a desirable dilution ratio. Energy dispersive spectrometry consistently showed that the per cent by weight of Ni was reduced by 45 per cent as compared with untreated NiTi SMA when the Taguchi-determined laser processing parameters were employed, thus verifying the laser's processing parameters as optimum

    On the 2:1 Orbital Resonance in the HD 82943 Planetary System

    Full text link
    We present an analysis of the HD 82943 planetary system based on a radial velocity data set that combines new measurements obtained with the Keck telescope and the CORALIE measurements published in graphical form. We examine simultaneously the goodness of fit and the dynamical properties of the best-fit double-Keplerian model as a function of the poorly constrained eccentricity and argument of periapse of the outer planet's orbit. The fit with the minimum chi_{nu}^2 is dynamically unstable if the orbits are assumed to be coplanar. However, the minimum is relatively shallow, and there is a wide range of fits outside the minimum with reasonable chi_{nu}^2. For an assumed coplanar inclination i = 30 deg. (sin i = 0.5), only good fits with both of the lowest order, eccentricity-type mean-motion resonance variables at the 2:1 commensurability, theta_1 and theta_2, librating about 0 deg. are stable. For sin i = 1, there are also some good fits with only theta_1 (involving the inner planet's periapse longitude) librating that are stable for at least 10^8 years. The libration semiamplitudes are about 6 deg. for theta_1 and 10 deg. for theta_2 for the stable good fit with the smallest libration amplitudes of both theta_1 and theta_2. We do not find any good fits that are non-resonant and stable. Thus the two planets in the HD 82943 system are almost certainly in 2:1 mean-motion resonance, with at least theta_1 librating, and the observations may even be consistent with small-amplitude librations of both theta_1 and theta_2.Comment: 24 pages, including 10 figures; accepted for publication in Ap

    Development of a high-sensitivity torsion balance to investigate the thermal Casimir force

    Full text link
    We report development of a high-sensitivity torsion balance to measure the thermal Casimir force. Special emphasis is placed on experimental investigations of a possible surface electric force originating from surface patch potentials that have been recently noticed by several experimental groups. By gaining a proper understanding of the actual contribution of the surface electric force in real materials, we aim to undertake precision force measurements to resolve the Casimir force at finite temperature in real metals, as well as in other semiconducting materials, such as graphene.Comment: Proceedings of the 10th International Conference "Quantum Field Theory Under the Influence of External Conditions"; 11 pages and 4 figure

    Sub-millimeter galaxies as progenitors of compact quiescent galaxies

    Get PDF
    Three billion years after the big bang (at redshift z=2), half of the most massive galaxies were already old, quiescent systems with little to no residual star formation and extremely compact with stellar mass densities at least an order of magnitude larger than in low redshift ellipticals, their descendants. Little is known about how they formed, but their evolved, dense stellar populations suggest formation within intense, compact starbursts 1-2 Gyr earlier (at 3<z<6). Simulations show that gas-rich major mergers can give rise to such starbursts which produce dense remnants. Sub-millimeter selected galaxies (SMGs) are prime examples of intense, gas-rich, starbursts. With a new, representative spectroscopic sample of compact quiescent galaxies at z=2 and a statistically well-understood sample of SMGs, we show that z=3-6 SMGs are consistent with being the progenitors of z=2 quiescent galaxies, matching their formation redshifts and their distributions of sizes, stellar masses and internal velocities. Assuming an evolutionary connection, their space densities also match if the mean duty cycle of SMG starbursts is 42 (+40/-29) Myr (consistent with independent estimates), which indicates that the bulk of stars in these massive galaxies were formed in a major, early surge of star-formation. These results suggests a coherent picture of the formation history of the most massive galaxies in the universe, from their initial burst of violent star-formation through their appearance as high stellar-density galaxy cores and to their ultimate fate as giant ellipticals.Comment: ApJ (in press

    Moving singing for lung health online in response to COVID-19: experience from a randomised controlled trial

    Get PDF
    Introduction Singing for Lung Health (SLH) is a popular arts-in-health activity for people with long-term respiratory conditions. Participants report biopsychosocial benefits, however research on impact is limited. The ‘SHIELD trial’, a randomised controlled, single (assessor) blind, trial of 12 weeks SLH vs usual care for people with Chronic Obstructive Pulmonary Disease (COPD) (n=120) was set-up to help to address this. The first group (n=18, 9 singing and 9 controls) started face-to-face (5 sessions) before changing to online delivery (7 sessions) due to COVID-19 related physical distancing measures. As such, the experience of this group is here reported as a pilot study to inform further research in this area. Methods We conducted semi-structured interviews and thematic analysis regarding barriers, facilitators and key considerations for transitioning from face-to-face to online delivery. Pilot quantitative outcomes include attendance, pre and post measures of quality of life and disease impact (SF-36, CAT score), breathlessness (MRC breathlessness scale, Dyspnoea-12), depression (PHQ9), anxiety (GAD-7), balance confidence (ABC scale) and physical activity (clinical visit PROactive physical activity in COPD tool, combining subjective rating and actigraphy). Results Attendance was 69% overall, (90% of the face-to-face sessions, 53% online sessions). Analysis of semi-structured interviews identified three themes regarding participation in SLH delivered face-to-face and online, these where 1) perceived benefits; 2) digital barriers (online); 3) digital facilitators (online). Findings were summarised into key considerations for optimising transitioning singing groups from face-to-face to online delivery. Pilot quantitative data suggested possible improvements in depression (treatment effect -4.78 PHQ9 points, p< 0.05, MCID 5) and balance confidence (treatment effect +17.21 ABC Scale points, p=0.04, MCID 14.2). Discussion This study identifies key considerations regarding the adaptation of SLH from face-to-face to online delivery. Pilot data suggest online group singing for people with COPD may deliver benefits related to reducing depression and improved balance confidence

    Spacetime Emergence and General Covariance Transmutation

    Get PDF
    Spacetime emergence refers to the notion that classical spacetime "emerges" as an approximate macroscopic entity from a non-spatio-temporal structure present in a more complete theory of interacting fundamental constituents. In this article, we propose a novel mechanism involving the "soldering" of internal and external spaces for the emergence of spacetime and the twin transmutation of general covariance. In the context of string theory, this mechanism points to a critical four dimensional spacetime background.Comment: 11 pages, v2: version to appear in MPL

    Causality-Violating Higgs Singlets at the LHC

    Full text link
    We construct a simple class of compactified five-dimensional metrics which admits closed timelike curves (CTCs), and derive the resulting CTCs as analytic solutions to the geodesic equations of motion. The associated Einstein tensor satisfies all the null, weak, strong and dominant energy conditions. In particular, no negative-energy "tachyonic" matter is required. In extra-dimensional models where gauge charges are bound to our brane, it is the Kaluza-Klein (KK) modes of gauge-singlets that may travel through the CTCs. From our brane point of view, many of these KK modes would appear to travel backward in time. We give a simple model in which time-traveling Higgs singlets can be produced by the LHC, either from decay of the Standard Model (SM) Higgs or through mixing with the SM Higgs. The signature of these time-traveling singlets is a secondary decay vertex pre-appearing before the primary vertex which produced them. The two vertices are correlated by momentum conservation. We demonstrate that pre-appearing vertices in the Higgs singlet-doublet mixing model may well be observable at the LHC.Comment: 55 pages, 5 figures, v4: Version updated to include in single manuscript the contents of Erratum [Phys. Rev. D 88, 069901(E) (2013)], Reply [Phys. Rev. D 88, 068702 (2013)], Comment [Phys. Rev. D 88, 068701 (2013), arXiv:1302.1711], and original published article [Phys. Rev. D 87, 045004 (2013), arXiv:1103.1373]. Positive conclusions remain unchange

    Nonlinear Decoherence in Quantum State Preparation of a Trapped Ion

    Get PDF
    We present a nonlinear decoherence model which models decoherence effect caused by various decohereing sources in a quantum system through a nonlinear coupling between the system and its environment, and apply it to investigating decoherence in nonclassical motional states of a single trapped ion. We obtain an exactly analytic solution of the model and find very good agreement with experimental results for the population decay rate of a single trapped ion observed in the NIST experiments by Meekhof and coworkers (D. M. Meekhof, {\it et al.}, Phys. Rev. Lett. {\bf 76}, 1796 (1996)).Comment: 5 pages, Revte
    corecore