20 research outputs found

    Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing

    Get PDF
    Proocedings of: Fourth Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials. Kurashiki, Japan, 02-05 September 2012.The opportunities of the hot wall aerosol synthesis, i.e. conventional spray pyrolysis (CSP) method are demonstrated for the generation of highly spherical three-dimensional (3D) nanostructured phosphor particles with uniformly distributed components, phases and nano-clustered inner structure. With the presumption that certain particle morphology is formed during the evaporation/drying stage, the aerosol transport properties and powder generation are correlated with the particles structural and morphological features. With the help of various analyzing techniques like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray Analysis and STEM mode (TEM/EDS), X-ray Powder Diffraction (XRPD) and fluorescence measurements the feasible processing of up-conversion rare-earth Y2O3:Er, Yb phosphors powders are discussed.The financial support for this work is provided by the Ministry of Education, Science and Technological Development of the Republic of Serbia Project No. 172035 and JSPS fellowship, 2011/2012 (O.M.).Publicad

    Structural investigation of mechanically activated ZnO powder

    Get PDF
    Commercially available ZnO powder was mechanically activated in a planetary ball mill. In order to investigate the specific surface area, pore volume and microstructure of non-activated and mechanically activated ZnO powders the authors performed N-2 physisorption, SEM and TEM. Crystallite size and lattice microstrain were analyzed by X-ray diffraction method. XRD patterns indicate that peak intensities are getting lower and expend with activation time. The reduction in crystallite size and increasing of lattice microstrain with prolonged milling time were determined applying the Rietveld's method. The difference between non-activated and the activated powder has been also observed by X-ray photoelectron spectroscopy (XPS). XPS is used for investigating the chemical bonding of ZnO powder by analyzing the energy of photoelectrons. The lattice vibration spectra were obtained using Raman spectroscopy. In Raman spectra some changes along with atypical resonant scattering were noticed, which were caused by mechanical activation

    Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging

    Get PDF
    Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The "up"- and the "down"-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility

    Synthesis and characterization of BaTiO3/-Fe2O3 core/shell structure

    Get PDF
    Multiferroic materials attracted a lot of attention in recent years because of their significant scientific interest and technological applications. The multiferroic core/shell powders have a better connectivity between the phases, resulting in superior dielectric and magneto electric properties. In this study, the influence of preparation condition on structure and properties of BaTiO3/-Fe2O3 core/shell composite materials was examined. The five samples were obtained by varying synthesis conditions, such as synthesized method (co-precipitation and sonochemical method) and pH values of solution. XRD and Raman spectroscopy analyses were performed in order to determine phase composition and structural changes within samples. Morphology modifications were examined by SEM and EDS analyses. Finally, effect of structural and microstructural changes on magnetic and electrical properties was detected and explained

    Mechanochemical synthesis of bismuth ferrite

    No full text
    A powder mixture of Bi2O3 and Fe2O3 was mechanically treated in a planetary ball mill in an air from 30 to 720 minutes. It was shown that the mechanochemical formation of BiFeO3 (BFO) phase was initiated after 60 min and its amount increased gradually with increasing milling time. A detailed XRPD structural analysis is realized by Rietveld’s structure refinement method. The resulting lattice parameters, relative phase abundances, crystallite sizes and crystal lattice microstrains were determined as a function of milling time. Microstructural analysis showed a little difference in morphology of obtained powders. The primary particles, irregular in shape and smaller than 400 nm are observed clearly, although they have assembled together to form agglomerates with varying size and morphology. Dense BFO ceramics were prepared by conventional solid-state reaction at the temperature of 810ºC for 1h followed immediately by quenching process. [Projekat Ministarstva nauke Republike Srbije, br. III45007: Zero- to Three-Dimensional Nanostructures for Application in Electronics and Renewable Energy Sources: Synthesis, Characterization and Processin

    Compositional and structural dependence of up-converting rare earth fluorides obtained through EDTA assisted hydro/solvothermal synthesis

    No full text
    In this feature article, we highlight our works on compositional and structural dependence of up converting rare earth (RE) fluorides obtained through ethylenediamine tetraacetic acid (EDTA) assisted hydrothermal synthesis. Various nanostructures were obtained by tuning of experimental conditions, such as precursor's concentration, degree of doping, reaction time and solvent used during synthesis. We correlated in detail the structural, morphological and optical properties of YF3 and NaYF4 compounds co-doped with Yb3+ and Er3+ (introduced in total mol% of 8 and 20). For this purpose, X-ray powder diffraction, scanning and transmission electron microscopy, energy dispersive X-ray and Furrier transform infrared spectroscopy, as well as, the photoluminescence spectra and decay times were recorded and analyzed. The particle size and phase content were found to be dependent on the nucleation rate, which, in turn, was governed by the precursor concentration, degree of doping and solvent type. The transformation from cubic to hexagonal NaYF4:Yb3+/Er3+ phase was found to be sensitive to the reaction time and precursors concentration, while the crystallization of orthorhombic YF3:Yb3+/Er3+ phase is achieved through lowering of dopants concentration or by changing of solvent during hydrothermal treatment. The up-conversion photoluminescence demonstrated morphology and crystal phase dependence and is found to be superior in microcrystalline samples, independent on their phase composition. (C) 2016 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology japan. All rights reserved
    corecore