96 research outputs found

    External double reference method to study concentration and temperature dependences of chemical shifts determined on a unified scale

    Get PDF
    We present the principle of an external reference method of NMR, named the external double reference method, to study concentration and temperature dependences of chemical shifts. By the method, we refer chemical shifts of various samples at different temperatures to the peak of a reference substance at a fixed referring temperature. Thus, we can determine the chemical shifts in a variety of sample conditions on a unified scale. Results of the application of the method to 1H- and 13C-chemical shifts of water and methanol are presented. We also report new data of volume magnetic susceptibilities for several deuterated solvents useful for the calibration in the method

    External double reference method to study concentration and temperature dependences of chemical shifts determined on a unified scale

    Get PDF
    We present the principle of an external reference method of NMR, named the external double reference method, to study concentration and temperature dependences of chemical shifts. By the method, we refer chemical shifts of various samples at different temperatures to the peak of a reference substance at a fixed referring temperature. Thus, we can determine the chemical shifts in a variety of sample conditions on a unified scale. Results of the application of the method to 1H- and 13C-chemical shifts of water and methanol are presented. We also report new data of volume magnetic susceptibilities for several deuterated solvents useful for the calibration in the method

    Description of three new bat-associated species of hard ticks (Acari, Ixodidae) from Japan

    Get PDF
    In Eurasia, the geographically most widespread ixodid tick species of the bat families Rhinolophidae Gray, Vespertilionidae Gray, and Miniopteridae Dobson were considered to belong to four species, Ixodes vespertilionis Koch, I. collaris Hornok, I. ariadnae Hornok, and I. simplex Neumann. Previous data attest that bat-associated tick species from Eastern Asia show remarkable genetic difference from the above four tick species, but in the absence of detailed morphological comparison these were regarded as conspecific. In this study we compensate for this lack of data on three bat-associated tick species, reporting their morphological comparison, as well as molecular and phylogenetic relationships. According to the results we describe the females of three tick species new to science, i.e., I. nipponrhinolophi Hornok & Takano, sp. nov., I. fuliginosus Hornok & Takano, sp. nov., and I. fujitai Hornok & Takano, sp. nov. In case of all three new tick species the cytochrome c oxidase subunit (coxI) gene showed remarkably high sequence differences from the species that they previously were thought to belong to, well exceeding the average limit delineating ixodid tick species. This, as well as observed morphological differences fully justify their taxonomical status as new species

    Progress of long pulse discharges by ECH in LHD

    Get PDF
    Using ion cyclotron heating and electron cyclotron heating (ECH), or solo ECH, trials of steady state plasma sustainment have been conducted in the superconducting helical/stellarator, large helical device (LHD) (Ida K et al 2015 Nucl. Fusion 55 104018). In recent years, the ECH system has been upgraded by applying newly developed 77 and 154 GHz gyrotrons. A new gas fueling system applied to the steady state operations in the LHD realized precise feedback control of the line average electron density even when the wall condition varied during long pulse discharges. Owing to these improvements in the ECH and the gas fueling systems, a stable 39 min discharge with a line average electron density ne_ave of 1.1  ×  1019 m−3, a central electron temperature Te0 of over 2.5 keV, and a central ion temperature Ti0 of 1.0 keV was successfully performed with ~350 kW EC-waves. The parameters are much improved from the previous 65 min discharge with ne_ave of 0.15  ×  1019 m−3 and Te0 of 1.7 keV, and the 30 min discharge with ne_ave of 0.7  ×  1019 m−3 and Te0 of 1.7 keV

    Synthesis and biological evaluation of radio-iodinated benzimidazoles as SPECT imaging agents for NR2B subtype of NMDA receptor.

    Get PDF
    In this study, the benzimidazole derivatives were synthesized and evaluated as imaging agents for the NR2B subtype of NMDA receptor. Among these ligands, 2-{[4-(4-iodobenzyl)piperidin-1-yl]methyl}benzimidazol-5-ol (8) and N-{2-[4-(4-iodobenzyl)-piperidin-1-ylmethyl]benzoimidazol-5-yl}-methanesulfonamide (9) exhibited high affinity for the NR2B subunit (K(i) values; 7.28 nM for 8 and 5.75 nM for 9). In vitro autoradiography experiments demonstrated high accumulation in the forebrain regions but low in the cerebellum for both [(125)I]8 and [(125)I]9. These regional distributions of the radioligands correlated with the expression of the NR2B subunit. The in vitro binding of these ligands was inhibited by NR2B antagonist but not by other site ligands, which suggested the high selectivity of [(125)I]8 and [(125)I]9 for the NR2B subunit. In mice, the regional brain uptakes of [(125)I]8 and [(125)I]9 at 5-180 min after administration were 0.42-0.56% and 0.44-0.67% dose/g, respectively. The brain-to-blood ratio of [(125)I]8 at 180 min was reduced by 34% in the presence of non-radioactive ligands and by 59% in the presence of the NR2B ligand Ro-25,6981. These results indicated that [(125)I]8 could be partially bound to the NR2B subunit in vivo. Although the brain uptake of these benzimidazole derivatives was too low to allow for in vivo SPECT imaging, these compounds might be useful scaffolds for the development of imaging probes specific for the NMDA receptors

    Hitomi X-Ray Studies of Giant Radio Pulses from the Crab Pulsar

    Get PDF
    To search for giant X-ray pulses correlated with the giant radio pulses (GRPs) from the Crab pulsar, we performed a simultaneous observation of the Crab pulsar with the X-ray satellite Hitomi in the 2300 keV band and the Kashima NICT radio telescope in the 1.41.7 GHz band with a net exposure of about 2 ks on 2016 March 25, just before the loss of the Hitomi mission. The timing performance of the Hitomi instruments was confirmed to meet the timing requirement and about 1000 and 100 GRPs were simultaneously observed at the main pulse and inter-pulse phases, respectively, and we found no apparent correlation between the giant radio pulses and the X-ray emission in either the main pulse or inter-pulse phase. All variations are within the 2 fluctuations of the X-ray fluxes at the pulse peaks, and the 3 upper limits of variations of main pulse or inter-pulse GRPs are 22% or 80% of the peak flux in a 0.20 phase width, respectively, in the 2300 keV band. The values for main pulse or inter-pulse GRPs become 25% or 110%, respectively, when the phase width is restricted to the 0.03 phase. Among the upper limits from the Hitomi satellite, those in the 4.510 keV and 70300 keV bands are obtained for the first time, and those in other bands are consistent with previous reports. Numerically, the upper limits of the main pulse and inter-pulse GRPs in the 0.20 phase width are about (2.4 and 9.3) 10(exp 11) erg cm(exp 2), respectively. No significant variability in pulse profiles implies that the GRPs originated from a local place within the magnetosphere. Although the number of photon-emitting particles should temporarily increase to account for the brightening of the radio emission, the results do not statistically rule out variations correlated with the GRPs, because the possible X-ray enhancement may appear due to a >0.02% brightening of the pulse-peak flux under such conditions

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Simplified Crack Initiation Analysis of Piezoelectric Ceramics under Cyclic Loading

    No full text
    corecore