5 research outputs found

    A Real-Time IVR Platform for Community Radio

    Get PDF
    Interactive Voice Response (IVR) platforms have been widely deployed in resource-limited settings. These systems tend to afford asynchronous push interactions, and within the context of health, provide medication reminders, descriptions of symptoms and tips on self-management. Here, we present the development of an IVR system for resource-limited settings that enables real-time, synchronous interaction. Inspired by community radio, and calls for health systems that are truly local, we developed "Sehat ki Vaani". Sehat ki Vaani is a real-time IVR platform that enables hosting and participation in radio chat shows on community-led topics. We deployed Sehat ki Vaani with two communities in North India on topics related to the management of Type 2 diabetes and maternal health. Our deployments highlight the potential for synchronous IVR systems to offer community connection and localised sharing of experience, while also highlighting the complexity of producing, hosting and participating in radio shows in real time through IVR. We discuss the relative strengths and weaknesses of synchronous IVR systems, and highlight lessons learnt for interaction design in this area

    DataSheet_1_TP53-PTEN-NF1 depletion in human brain organoids produces a glioma phenotype in vitro.zip

    No full text
    Glioblastoma (GBM) is fatal and the study of therapeutic resistance, disease progression, and drug discovery in GBM or glioma stem cells is often hindered by limited resources. This limitation slows down progress in both drug discovery and patient survival. Here we present a genetically engineered human cerebral organoid model with a cancer-like phenotype that could provide a basis for GBM-like models. Specifically, we engineered a doxycycline-inducible vector encoding shRNAs enabling depletion of the TP53, PTEN, and NF1 tumor suppressors in human cerebral organoids. Designated as inducible short hairpin-TP53-PTEN-NF1 (ish-TPN), doxycycline treatment resulted in human cancer-like cerebral organoids that effaced the entire organoid cytoarchitecture, while uninduced ish-TPN cerebral organoids recapitulated the normal cytoarchitecture of the brain. Transcriptomic analysis revealed a proneural GBM subtype. This proof-of-concept study offers a valuable resource for directly investigating the emergence and progression of gliomas within the context of specific genetic alterations in normal cerebral organoids.</p

    Table_1_TP53-PTEN-NF1 depletion in human brain organoids produces a glioma phenotype in vitro.docx

    No full text
    Glioblastoma (GBM) is fatal and the study of therapeutic resistance, disease progression, and drug discovery in GBM or glioma stem cells is often hindered by limited resources. This limitation slows down progress in both drug discovery and patient survival. Here we present a genetically engineered human cerebral organoid model with a cancer-like phenotype that could provide a basis for GBM-like models. Specifically, we engineered a doxycycline-inducible vector encoding shRNAs enabling depletion of the TP53, PTEN, and NF1 tumor suppressors in human cerebral organoids. Designated as inducible short hairpin-TP53-PTEN-NF1 (ish-TPN), doxycycline treatment resulted in human cancer-like cerebral organoids that effaced the entire organoid cytoarchitecture, while uninduced ish-TPN cerebral organoids recapitulated the normal cytoarchitecture of the brain. Transcriptomic analysis revealed a proneural GBM subtype. This proof-of-concept study offers a valuable resource for directly investigating the emergence and progression of gliomas within the context of specific genetic alterations in normal cerebral organoids.</p

    RSSDI-ESI Clinical Practice Recommendations for the Management of Type 2 Diabetes Mellitus 2020

    No full text
    corecore