7 research outputs found

    Table_1_Trends in the diagnostic delay and pathway for amyotrophic lateral sclerosis patients across different countries.DOCX

    No full text
    BackgroundAmyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disease with a median survival of 2–5 years. An early diagnosis is essential for providing ALS patients the finest management possible. Studies from different countries report a similar median diagnostic delay of around 12 months, which is still far from desirable. We analyzed the diagnostic pathway in different countries in order to identify the major challenges.MethodsWe studied a cohort of 1,405 ALS patients from five different centers, in four different countries (Turkey, Germany, Poland, and Portugal), which collaborated in a common database. Demographic, disease and sociocultural factors were collected. Time from first symptom onset to first medical evaluation and to diagnosis, the specialist assessment and investigations requested were analyzed. Factors contributing to diagnostic delay were evaluated by multivariate linear regression.ResultsThe median diagnostic delay from first symptom onset was 11 months and was similar between centers. Major differences were seen in the time from symptom onset to first medical evaluation. An earlier first medical evaluation was associated with a longer time to diagnosis, highlighting that ALS diagnosis is not straightforward in the early stages of the disease. The odds for ALS diagnosis were superior when evaluated by a neurologist and increased over time. Electromyography was decisive in establishing the diagnosis.ConclusionsWe suggest that a specific diagnostic test for ALS—a specific biomarker—will be needed to achieve early diagnosis. Early referral to a neurologist and to electromyography is important for early ALS diagnosis.</p

    Data_Sheet_1_Telomere length analysis in amyotrophic lateral sclerosis using large-scale whole genome sequence data.pdf

    Get PDF
    BackgroundAmyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the loss of upper and lower motor neurons, leading to progressive weakness of voluntary muscles, with death following from neuromuscular respiratory failure, typically within 3 to 5 years. There is a strong genetic contribution to ALS risk. In 10% or more, a family history of ALS or frontotemporal dementia is obtained, and the Mendelian genes responsible for ALS in such families have now been identified in about 50% of cases. Only about 14% of apparently sporadic ALS is explained by known genetic variation, suggesting that other forms of genetic variation are important. Telomeres maintain DNA integrity during cellular replication, differ between sexes, and shorten naturally with age. Sex and age are risk factors for ALS and we therefore investigated telomere length in ALS.MethodsSamples were from Project MinE, an international ALS whole genome sequencing consortium that includes phenotype data. For validation we used donated brain samples from motor cortex from people with ALS and controls. Ancestry and relatedness were evaluated by principal components analysis and relationship matrices of DNA microarray data. Whole genome sequence data were from Illumina HiSeq platforms and aligned using the Isaac pipeline. TelSeq was used to quantify telomere length using whole genome sequence data. We tested the association of telomere length with ALS and ALS survival using Cox regression.ResultsThere were 6,580 whole genome sequences, reducing to 6,195 samples (4,315 from people with ALS and 1,880 controls) after quality control, and 159 brain samples (106 ALS, 53 controls). Accounting for age and sex, there was a 20% (95% CI 14%, 25%) increase of telomere length in people with ALS compared to controls (p = 1.1 × 10−12), validated in the brain samples (p = 0.03). Those with shorter telomeres had a 10% increase in median survival (p = 5.0×10−7). Although there was no difference in telomere length between sporadic ALS and familial ALS (p=0.64), telomere length in 334 people with ALS due to expanded C9orf72 repeats was shorter than in those without expanded C9orf72 repeats (p = 5.0×10−4).DiscussionAlthough telomeres shorten with age, longer telomeres are a risk factor for ALS and worsen prognosis. Longer telomeres are associated with ALS.</p
    corecore