9 research outputs found

    Spread of bacterial wilt disease of potato in the highlands of Fouta Djalon, Republic of Guinea

    Get PDF
    Bacterial wilt in potato (Solanum tuberosum) is caused by Ralstonia solanacearum in the highlands of Fouta Djalon in Guinea. The disease causes 50-70% loss of potato in Guinea. The bacterium is transmitted either by imported tuber seeds or through seed exchanges between the farmers themselves from a contaminated area to bacteria-free areas or through irrigation waters along the fields. This is mainly a consequence of the informal potato seed system that prevails in Guinea. Because of the high price of seeds, farmers use several sources of supply. However, potato is an attractive cash crop in Guinea and the most important economic crop in Fouta Djalon. Most populations in the middle Guinea utilizes potato. The potato farmer's organization in Guinea, FPFD (Fédération des Producteurs du Fouta Djalon), is a model in West African sub-region because of its dynamism and organization with its 500 groups, 25 unions and more than 25,000 members. Training of potato growers in certified seed production techniques remains a major problem in Guinea that needed to be solved. This information is important for developing bacterial wilt disease management strategies through the training of farmers and state support for research

    Impact of intermittent preventive treatment with sulphadoxine-pyrimethamine targeting the transmission season on the incidence of clinical malaria in children in Mali

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent studies have shown that intermittent preventive malaria treatment (IPT) in infants in areas of stable malaria transmission reduces malaria and severe anaemia incidence. However in most areas malaria morbidity and mortality remain high in older children.</p> <p>Methods</p> <p>To evaluate the effect of seasonal IPT with sulphadoxine pyrimethamine (SP) on incidence of malaria disease in area of seasonal transmission, 262 children 6 months-10 years in Kambila, Mali were randomized to receive either IPT with SP twice at eight weeks interval or no IPT during the transmission season of 2002 and were followed up for 12 months. Subjects were also followed during the subsequent transmission season in 2003 to assess possible rebound effect. Clinical malaria cases were treated with SP and followed to assess the <it>in vivo </it>response during both periods.</p> <p>Results</p> <p>The incidence rate of malaria disease per 1,000 person-months during the first 12 months was 3.2 episodes in the treatment group vs. 5.8 episodes in the control group with age-adjusted Protective Efficacy (PE) of 42.5%; [95% CI 28.6%–53.8%]. When the first 16 weeks of follow up is considered age-adjusted PE was 67.5% [95% CI 55.3% – 76.6%]. During the subsequent transmission season, the incidence of clinical malaria per 1000 persons-days was similar between the two groups (23.0 vs 21.5 episodes, age-adjusted IRR = 1.07 [95% CI, 0.90–1.27]). No significant difference was detected in <it>in vivo </it>response between the groups during both periods.</p> <p>Conclusion</p> <p>Two malaria intermittent treatments targeting the peak transmission season reduced the annual incidence rate of clinical malaria by 42.5% in an area with intense seasonal transmission. This simple strategy is likely to be one of the most effectives in reducing malaria burden in such areas.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov NCT00623155</p

    Spatio-Temporal Variability of Malaria Incidence in the Health District of Kati, Mali, 2015&ndash;2019

    No full text
    Introduction: Despite the implementation of control strategies at the national scale, the malaria burden remains high in Mali, with more than 2.8 million cases reported in 2019. In this context, a new approach is needed, which accounts for the spatio-temporal variability of malaria transmission at the local scale. This study aimed to describe the spatio-temporal variability of malaria incidence and the associated meteorological and environmental factors in the health district of Kati, Mali. Methods: Daily malaria cases were collected from the consultation records of the 35 health areas of Kati&rsquo;s health district, for the period 2015&ndash;2019. Data on rainfall, relative humidity, temperature, wind speed, the normalized difference vegetation index, air pressure, and land use&ndash;land cover were extracted from open-access remote sensing sources, while data on the Niger River&rsquo;s height and flow were obtained from the National Department of Hydraulics. To reduce the dimension and account for collinearity, strongly correlated meteorological and environmental variables were combined into synthetic indicators (SI), using a principal component analysis. A generalized additive model was built to determine the lag and the relationship between the main SIs and malaria incidence. The transmission periods were determined using a change-point analysis. High-risk clusters (hotspots) were detected using the SatScan method and were ranked according to risk level, using a classification and regression tree analysis. Results: The peak of the malaria incidence generally occurred in October. Peak incidence decreased from 60 cases per 1000 person&ndash;weeks in 2015, to 27 cases per 1000 person&ndash;weeks in 2019. The relationship between the first SI (river flow and height, relative humidity, and rainfall) and malaria incidence was positive and almost linear. A non-linear relationship was found between the second SI (air pressure and temperature) and malaria incidence. Two transmission periods were determined per year: a low transmission period from January to July&mdash;corresponding to a persisting transmission during the dry season&mdash;and a high transmission period from July to December. The spatial distribution of malaria hotspots varied according to the transmission period. Discussion: Our study confirmed the important variability of malaria incidence and found malaria transmission to be associated with several meteorological and environmental factors in the Kati district. The persistence of malaria during the dry season and the spatio-temporal variability of malaria hotspots reinforce the need for innovative and targeted strategies

    Rapidly Increasing Severe Acute Respiratory Syndrome Coronavirus 2 Seroprevalence and Limited Clinical Disease in 3 Malian Communities: A Prospective Cohort Study

    No full text
    International audienceBackground. The extent of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure and transmission in Mali and the surrounding region is not well understood. We aimed to estimate the cumulative incidence of SARS-CoV-2 in 3 communities and understand factors associated with infection. Methods. Between July 2020 and January 2021, we collected blood samples and demographic, social, medical, and self-reported symptoms information from residents aged 6 months and older over 2 study visits. SARS-CoV-2 antibodies were measured using a highly specific 2-antigen enzyme-linked immunosorbent assay optimized for use in Mali. We calculated cumulative adjusted seroprevalence for each community and evaluated factors associated with serostatus at each visit by univariate and multivariate analysis. Results. Overall, 94.8% (2533/2672) of participants completed both study visits. A total of 31.3% (837/2672) were aged <10 years, 27.6% (737/2672) were aged 10-17 years, and 41.1% (1098/2572) were aged ≥18 years. The cumulative SARS-CoV-2 exposure rate was 58.5% (95% confidence interval, 47.5-69.4). This varied between sites and was 73.4% in the urban community of Sotuba, 53.2% in the rural town of Bancoumana, and 37.1% in the rural village of Donéguébougou. Study site and increased age were associated with serostatus at both study visits. There was minimal difference in reported symptoms based on serostatus. Conclusions. The true extent of SARS-CoV-2 exposure in Mali is greater than previously reported and may now approach hypothetical "herd immunity" in urban areas. The epidemiology of the pandemic in the region may be primarily subclinical and within background illness rates

    Safety and immunogenicity of Pfs25H-EPA/Alhydrogel, a transmission-blocking vaccine against Plasmodium falciparum: a randomised, double-blind, comparator-controlled, dose-escalation study in healthy Malian adults

    No full text
    International audienceBACKGROUND:Pfs25H-EPA is a protein-protein conjugate transmission-blocking vaccine against Plasmodium falciparum that is safe and induces functional antibodies in malaria-naive individuals. In this field trial, we assessed Pfs25H-EPA/Alhydrogel for safety and functional immunogenicity in Malian adults.METHODS:This double-blind, randomised, comparator-controlled, dose-escalation trial in Bancoumana, Mali, was done in two staggered phases, an initial pilot safety assessment and a subsequent main phase. Healthy village residents aged 18-45 years were eligible if they had normal laboratory results (including HIV, hepatitis B, hepatitis C tests) and had not received a previous malaria vaccine or recent immunosuppressive drugs, vaccines, or blood products. Participants in the pilot safety cohort and the main cohort were assigned (1:1) by block randomisation to a study vaccine group. Participants in the pilot safety cohort received two doses of Pfs25H-EPA/Alhydrogel 16 μg or Euvax B (comparator vaccine), and participants in the main cohort received Pfs25H-EPA/Alhydrogel 47 μg or comparator vaccine (Euvax B for the first, second, and third vaccinations and Menactra for the fourth vaccination). Participants and investigators were masked to group assignment, and randomisation codes in sealed envelopes held by a site pharmacist. Vials with study drug for injection were covered by opaque tape and labelled with a study identification number. Group assignments were unmasked at final study visit. The primary outcomes were safety and tolerability for all vaccinees. The secondary outcome measure was immunogenicity 14 days after vaccination in the per-protocol population, as confirmed by the presence of antibodies against Pfs25H measured by ELISA IgG and antibody functionality assessed by standard membrane feeding assays and by direct skin feeding assays. This trial is registered with ClinicalTrials.gov, number NCT01867463.FINDINGS:Between May 15, and Jun 16, 2013, 230 individuals were screened for eligibility. 20 individuals were enrolled in the pilot safety cohort; ten participants were assigned to receive Pfs25H-EPA/Alhydrogel 16 μg, and ten participants were assigned to receive comparator vaccine. 100 individuals were enrolled in the main cohort; 50 participants were assigned to receive Pfs25H-EPA/Alhydrogel 47 μg, and 50 participants were assigned to receive comparator vaccine. Compared with comparator vaccinees, Pfs25H vaccinees had more solicited adverse events (137 events vs 86 events; p=0·022) and treatment-related adverse events (191 events vs 126 events, p=0·034), but the number of other adverse events did not differ between study vaccine groups (792 vs 683). Pfs25H antibody titres increased with each dose, with a peak geometric mean of 422·3 ELISA units (95% CI 290-615) after the fourth dose, but decreased relatively rapidly thereafter, with a half-life of 42 days for anti-Pfs25H and 59 days for anti-EPA (median ratio of titres at day 600 to peak, 0·19 for anti-Pfs25H vs 0·29 for anti-EPA; p=0·009). Serum transmission-reducing activity was greater for Pfs25H than for comparator vaccine after the fourth vaccine dose (p<0·001) but not after the third dose (p=0·09). Repeated direct skin feeds were well tolerated, but the number of participants who infected at least one mosquito did not differ between Pfs25H and comparator vaccinees after the fourth dose (p=1, conditional exact).INTERPRETATION:Pfs25H-EPA/Alhydrogel was well tolerated and induced significant serum activity by standard membrane feeding assays but transmission blocking activity was not confirmed by weekly direct skin feed. This activity required four doses, and titres decreased rapidly after the fourth dose. Alternative antigens or combinations should be assessed to improve activity.FUNDING:Division of Intramural Research, National Institute of Allergy and Infectious Diseases

    A randomized controlled phase 2 trial of the blood stage AMA1-C1/Alhydrogel malaria vaccine in children in Mali

    No full text
    A double blind, randomized, controlled Phase 2 clinical trial was conducted to assess the safety, immunogenicity, and biologic impact of the vaccine candidate Apical Membrane Antigen 1- Combination 1 (AMA1-C1), adjuvanted with Alhydrogel(®). Participants were healthy children 2-3 years old living in or near the village of Bancoumana, Mali. A total of 300 children received either the study vaccine or the comparator. No impact of vaccination was seen on the primary endpoint, the frequency of parasitemia measured as episodes >3000 per μL per day at risk. There was a negative impact of vaccination on the hemoglobin level during clinical malaria, and mean incidence of hemoglobin <8.5 g/dL, in the direction of lower hemoglobin in the children who received AMA1-C1, although these differences were not significant after correction for multiple tests. These differences were not seen in the second year of transmission

    Comparing the Understanding of Subjects Receiving a Candidate Malaria Vaccine in the United States and Mali

    Get PDF
    Initial responses to questionnaires used to assess participants' understanding of informed consent for malaria vaccine trials conducted in the United States and Mali were tallied. Total scores were analyzed by age, sex, literacy (if known), and location. Ninety-two percent (92%) of answers by United States participants and 85% of answers by Malian participants were correct. Questions more likely to be answered incorrectly in Mali related to risk, and to the type of vaccine. For adult participants, independent predictors of higher scores were younger age and female sex in the United States, and male sex in Mali. Scores in the United States were higher than in Mali (P = 0.005). Despite this difference participants at both sites were well informed overall. Although interpretation must be qualified because questionnaires were not intended as research tools and were not standardized among sites, these results do not support concerns about systematic low understanding among research participants in developing versus developed countries
    corecore