369 research outputs found
Frequency Analysis of Gradient Estimators in Volume Rendering
Gradient information is used in volume rendering to classify and color samples along a ray. In this paper, we present an analysis of the theoretically ideal gradient estimator and compare it to some commonly used gradient estimators. A new method is presented to calculate the gradient at arbitrary sample positions, using the derivative of the interpolation filter as the basis for the new gradient filter. As an example, we will discuss the use of the derivative of the cubic spline. Comparisons with several other methods are demonstrated. Computational efficiency can be realized since parts of the interpolation computation can be leveraged in the gradient estimatio
Indigenous and institutional profile: Limpopo River Basin
River basins / Water resource management / History / Institutions / Social aspects / Legal aspects
Chemical stability in H2S and creep characterization of the mixed protonic conductor Nd5.5WO11.25-d
[EN] The integration of hydrogen permeable membranes in catalytic membrane reactors for thermodynamically limited reactions such as steam methane reforming can improve the per-pass yield and simultaneously produce a high-purity H-2 stream. Mixed protonic electronic materials based membranes are potential candidates for these applications due to their elevated temperature operation, good stability and potentially low cost. However, a specific mechanical behavior and stability under harsh atmospheres is needed to guarantee sufficient lifetime in real-world processes. This work presents the mechanical characterization and a study of the chemical stability under H2S containing atmospheres for the compound Nd5.5WO11.(25-8) Mechanical characterization was performed by micro indentation and creep measurements in air. Chemical stability was evaluated by XRD and SEM and the effect of the H2S on the transport properties was evaluated by impedance spectroscopy. Under H2S atmospheres, the total conductivity increases at 600 degrees C and 700 degrees C. The conductivity increase is attributed to the incorporation of S2- ions in oxide-ion sublattice. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.This work was financially supported by the Spanish Government (ENE2014-57651-R and SEV-2012-0267 grants). Authors would like to thank to U. Gerhards, M. Fabuel, T. Osipova and Dr. Wesel for WDS and SEM analysis.Escolåstico Rozalén, S.; Stournari, V.; Malzbender, J.; Haas-Santo, K.; Dittmeyer, R.; Serra Alfaro, JM. (2018). Chemical stability in H2S and creep characterization of the mixed protonic conductor Nd5.5WO11.25-d. International Journal of Hydrogen Energy. 43(17):8342-8354. https://doi.org/10.1016/j.ijhydene.2018.03.060S83428354431
First principles calculation of structural and magnetic properties for Fe monolayers and bilayers on W(110)
Structure optimizations were performed for 1 and 2 monolayers (ML) of Fe on a
5 ML W(110) substrate employing the all-electron full-potential linearized
augmented plane-wave (FP-LAPW) method. The magnetic moments were also obtained
for the converged and optimized structures. We find significant contractions
( 10 %) for both the Fe-W and the neighboring Fe-Fe interlayer spacings
compared to the corresponding bulk W-W and Fe-Fe interlayer spacings. Compared
to the Fe bcc bulk moment of 2.2 , the magnetic moment for the surface
layer of Fe is enhanced (i) by 15% to 2.54 for 1 ML Fe/5 ML W(110), and
(ii) by 29% to 2.84 for 2 ML Fe/5 ML W(110). The inner Fe layer for 2
ML Fe/5 ML W(110) has a bulk-like moment of 2.3 . These results agree
well with previous experimental data
QualitÀtsprodukt Erziehungsberatung. Empfehlungen zu Leistungen, QualitÀtsmerkmalen und Kennziffern
Neben einer Beschreibung der Leistung Erziehungs- und Familienberatung - Beratung und Therapie, prĂ€ventive Angebote und VernetzungsaktivitĂ€ten - werden ihre QualitĂ€tsmerkmale - gegliedert nach Struktur-, Prozess- und ErgebnisqualitĂ€t - ausfĂŒhrlich dargestellt und Kennziffern zu ihrer quantitativen Erfassung vorgeschlagen. Der Anhang enthĂ€lt u.a. eine Kurzfassung der vorliegenden Empfehlungen zu Leistungen, QualitĂ€tsmerkmalen und Kennziffern. (DIPF/Autor
Production and reliability oriented SOFC cell and stack design
The paper presents an innovative development methodology for a production and reliability oriented SOFC cell and stack design aiming at improving the stacks robustness, manufacturability, efficiency and cost. Multi-physics models allowed a probabilistic approach to consider statistical variations in production, material and operating parameters for the optimization phase. A methodology for 3D description of spatial distribution of material properties based on a random field models was developed and validated by experiments. Homogenized material models on multiple levels of the SOFC stack were established. The probabilistic models were related to the experimentally obtained properties of base materials to establish a statistical relationship between the material properties and the most relevant load effects. Software algorithms for meta models that allow the detection of relationships between input and output parameters and to perform a sensitivity analysis were developed and implemented. The capabilities of the methodology is illustrated on two practical cases
Digital endpoints in clinical trials of Alzheimer's disease and other neurodegenerative diseases: challenges and opportunities.
Alzheimer's disease (AD) and other neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD) are associated with progressive cognitive, motor, affective and consequently functional decline considerably affecting Activities of Daily Living (ADL) and quality of life. Standard assessments, such as questionnaires and interviews, cognitive testing, and mobility assessments, lack sensitivity, especially in early stages of neurodegenerative diseases and in the disease progression, and have therefore a limited utility as outcome measurements in clinical trials. Major advances in the last decade in digital technologies have opened a window of opportunity to introduce digital endpoints into clinical trials that can reform the assessment and tracking of neurodegenerative symptoms. The Innovative Health Initiative (IMI)-funded projects RADAR-AD (Remote assessment of disease and relapse-Alzheimer's disease), IDEA-FAST (Identifying digital endpoints to assess fatigue, sleep and ADL in neurodegenerative disorders and immune-mediated inflammatory diseases) and Mobilise-D (Connecting digital mobility assessment to clinical outcomes for regulatory and clinical endorsement) aim to identify digital endpoints relevant for neurodegenerative diseases that provide reliable, objective, and sensitive evaluation of disability and health-related quality of life. In this article, we will draw from the findings and experiences of the different IMI projects in discussing (1) the value of remote technologies to assess neurodegenerative diseases; (2) feasibility, acceptability and usability of digital assessments; (3) challenges related to the use of digital tools; (4) public involvement and the implementation of patient advisory boards; (5) regulatory learnings; and (6) the significance of inter-project exchange and data- and algorithm-sharing
Recommended from our members
Numerical Investigation into the Effect of Splats and Pores on the Thermal Fracture of Air Plasma-Sprayed Thermal Barrier Coatings
The effect of splat interfaces on the fracture behavior of air plasma-sprayed thermal barrier coatings (APS-TBC) is analyzed using finite element modeling involving cohesive elements. A multiscale approach is adopted in which the explicitly resolved top coat microstructural features are embedded in a larger domain. Within the computational cell, splat interfaces are modeled as being located on a sinusoidal interface in combination with a random distribution of pores. Parametric studies are conducted for different splat interface waviness, spacing, pore volume fraction and fracture properties of the splat interface. The results are quantified in terms of crack nucleation temperature and total microcrack length. It is found that the amount of cracking in TBCs actually decreases with increased porosity up to a critical volume fraction. In contrast, the presence of splats is always detrimental to the TBC performance. This detrimental effect is reduced for the splat interfaces with high waviness and spacing compared to those with low waviness and spacing. The crack initiation temperature was found to be linearly dependent on the normal fracture properties of the splat interface. Insights derived from the numerical results aid in engineering the microstructure of practical TBC systems for improved resistance against thermal fracture
Design and optimization of porous ceramic supports for asymmetric ceria-based oxygen transport membranes
The microstructure, mechanical properties and gas permeability of porous supports of Ce0.9Gd0.1O1.95âÎŽ (CGO) were investigated as a function of sintering temperature and volume fraction of pore former for use in planar asymmetric oxygen transport membranes (OTMs). With increasing the pore former content from 11 vol% to 16 vol%, the gas permeabilities increased by a factor of 5 when support tapes were sintered to comparable densities. The improved permeabilities were due to a more favourable microstructure with larger interconnected pores at a porosity of 45% and a fracture strength of 47±2 MPa (m=7). The achieved gas permeability of 2.25Ă10â15 m2 for a 0.4 mm thick support will not limit the gas transport for oxygen production but in partial oxidation of methane to syngas at higher oxygen fluxes. For integration of the CGO support layer into a flat, asymmetric CGO membrane, the sintering activity of the CGO membrane was reduced by Fe2O3 addition (replacing Co3O4 as sintering additive)
Validation, Deployment, and Real-World Implementation of a Modular Toolbox for Alzheimerâs Disease Detection and Dementia Risk Reduction: The AD-RIDDLE Project
The Real-World Implementation, Deployment, and Validation of Early Detection Tools and Lifestyle Enhancement (AD-RIDDLE) project, recently launched with the support of the EU Innovative Health Initiative (IHI) public-private partnership and UK Research and Innovation (UKRI), aims to develop, test, and deploy a modular toolbox platform that can reduce existing barriers to the timely detection, and therapeutic approaches in Alzheimerâs disease (AD), thus accelerating AD innovation. By focusing on health system and health worker practices, AD-RIDDLE seeks to improve and smooth AD management at and between each key step of the clinical pathway and across the disease continuum, from at-risk asymptomatic stages to early symptomatic ones. This includes innovation and improvement in AD awareness, risk reduction and prevention, detection, diagnosis, and intervention. The 24 partners in the AD-RIDDLE interdisciplinary consortium will develop and test the AD-RIDDLE toolbox platform and its components individually and in combination in six European countries. Expected results from this cross-sectoral research collaboration include tools for earlier detection and accurate diagnosis; validated, novel digital cognitive and blood-based biomarkers; and improved access to individualized preventative interventions (including multimodal interventions and symptomatic/disease-modifying therapies) across diverse populations, within the framework of precision medicine. Overall, AD-RIDDLE toolbox platform will advance management of AD, improving outcomes for patients and their families, and reducing costs
- âŠ