82 research outputs found

    Convergence of cMyc and β-catenin on Tcf7l1 enables endoderm specification.

    Get PDF
    The molecular machinery that directs formation of definitive endoderm from pluripotent stem cells is not well understood. Wnt/β-catenin and Nodal signalling have been implicated, but the requirements for lineage specification remain incompletely defined. Here, we demonstrate a potent effect of inhibiting glycogen synthase kinase 3 (GSK3) on definitive endoderm production. We find that downstream of GSK3 inhibition, elevated cMyc and β-catenin act in parallel to reduce transcription and DNA binding, respectively, of the transcriptional repressor Tcf7l1. Tcf7l1 represses FoxA2, a pioneer factor for endoderm specification. Deletion of Tcf7l1 is sufficient to allow upregulation of FoxA2 in the presence of Activin. In wild-type cells, cMyc contributes by reducing Tcf7l1 mRNA, while β-catenin acts on Tcf7l1 protein. GSK3 inhibition is further required for consolidation of endodermal fate via upregulation of Sox17, highlighting sequential roles for Wnt signalling. The identification of a cMyc/β-catenin-Tcf7l1-FoxA2 axis reveals a de-repression mechanism underlying endoderm induction that may be recapitulated in other developmental and patho-logical contexts.This study was funded by the Juvenile Diabetes Research Foundation International, the European Commission FP7 project BetaCellTherapy (agreement No. 241883), a core support grant from the Wellcome Trust and MRC to the Wellcome Trust – Medical Research Council Cambridge Stem Cell Institute, and a University of Edinburgh Chancellor’s Fellowship awarded to GM. GM was a JDRF advanced postdoctoral fellow. AS is a Medical Research Council Professor.This is the final version of the article. It was first available from Wiley via http://dx.doi.org/10.15252/embj.20159211

    c- and N-myc Regulate Neural Precursor Cell Fate, Cell Cycle, and Metabolism to Direct Cerebellar Development

    Get PDF
    Separate murine knockout (KO) of either c- or N-myc genes in neural stem and precursor cells (NSC) driven by nestin-cre causes microcephaly. The cerebellum is particularly affected in the N-myc KO, leading to a strong reduction in cerebellar granule neural progenitors (CGNP) and mature granule neurons. In humans, mutation of N-myc also causes microcephaly in Feingold Syndrome. We created a double KO (DKO) of c- and N-myc using nestin-cre, which strongly impairs brain growth, particularly that of the cerebellum. Granule neurons were almost absent from the Myc DKO cerebellum, and other cell types were relatively overrepresented, including astroglia, oligodendrocytes, and Purkinje neurons. These findings are indicative of a profound disruption of cell fate of cerebellar stem and precursors. DKO Purkinje neurons were strikingly lacking in normal arborization. Inhibitory neurons were ectopic and exhibited very abnormal GAD67 staining patterns. Also consistent with altered cell fate, the adult DKO cerebellum still retained a residual external germinal layer (EGL). CGNP in the DKO EGL were almost uniformly NeuN and p27KIP1 positive as well as negative for Math1 and BrdU at the peak of normal cerebellar proliferation at P6. The presence of some mitotic CGNP in the absence of S phase cells suggests a possible arrest in M phase. CGNP and NSC metabolism also was affected by loss of Myc as DKO cells exhibited weak nucleolin staining. Together these findings indicate that c- and N-Myc direct cerebellar development by maintaining CGNP and NSC populations through inhibiting differentiation as well as directing rapid cell cycling and active cellular metabolism

    Sequential and Coordinated Actions of c-Myc and N-Myc Control Appendicular Skeletal Development

    Get PDF
    BACKGROUND: During limb development, chondrocytes and osteoblasts emerge from condensations of limb bud mesenchyme. These cells then proliferate and differentiate in separate but adjacent compartments and function cooperatively to promote bone growth through the process of endochondral ossification. While many aspects of limb skeletal formation are understood, little is known about the mechanisms that link the development of undifferentiated limb bud mesenchyme with formation of the precartilaginous condensation and subsequent proliferative expansion of chondrocyte and osteoblast lineages. The aim of this study was to gain insight into these processes by examining the roles of c-Myc and N-Myc in morphogenesis of the limb skeleton. METHODOLOGY/PRINCIPAL FINDINGS: To investigate c-Myc function in skeletal development, we characterized mice in which floxed c-Myc alleles were deleted in undifferentiated limb bud mesenchyme with Prx1-Cre, in chondro-osteoprogenitors with Sox9-Cre and in osteoblasts with Osx1-Cre. We show that c-Myc promotes the proliferative expansion of both chondrocytes and osteoblasts and as a consequence controls the process of endochondral growth and ossification and determines bone size. The control of proliferation by c-Myc was related to its effects on global gene transcription, as phosphorylation of the C-Terminal Domain (pCTD) of RNA Polymerase II, a marker of general transcription initiation, was tightly coupled to cell proliferation of growth plate chondrocytes where c-Myc is expressed and severely downregulated in the absence of c-Myc. Finally, we show that combined deletion of N-Myc and c-Myc in early limb bud mesenchyme gives rise to a severely hypoplastic limb skeleton that exhibits features characteristic of individual c-Myc and N-Myc mutants. CONCLUSIONS/SIGNIFICANCE: Our results show that N-Myc and c-Myc act sequentially during limb development to coordinate the expansion of key progenitor populations responsible for forming the limb skeleton

    Endothelial progenitor cells display clonal restriction in multiple myeloma

    Get PDF
    BACKGROUND: In multiple myeloma (MM), increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs) contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI) patterns in female patients by a human androgen receptor assay (HUMARA). In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH) gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. METHODS: A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (V(H)). RESULTS: In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele) in 64% (n = 7). In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele). In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with V(H )primers resulted in amplification of the same product in EPCs and bone marrow cells in 71% (n = 5) of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status, unlike patients whose EPCs had random XCI. CONCLUSION: Our results suggest that EPCs in at least a substantial subpopulation of MM patients are related to the neoplastic clone and that this is an important mechanism for upregulation of tumor neovascularization in MM

    MicroRNA signatures in B-cell lymphomas

    Get PDF
    Accurate lymphoma diagnosis, prognosis and therapy still require additional markers. We explore the potential relevance of microRNA (miRNA) expression in a large series that included all major B-cell non-Hodgkin lymphoma (NHL) types. The data generated were also used to identify miRNAs differentially expressed in Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL) samples. A series of 147 NHL samples and 15 controls were hybridized on a human miRNA one-color platform containing probes for 470 human miRNAs. Each lymphoma type was compared against the entire set of NHLs. BL was also directly compared with DLBCL, and 43 preselected miRNAs were analyzed in a new series of routinely processed samples of 28 BLs and 43 DLBCLs using quantitative reverse transcription-polymerase chain reaction. A signature of 128 miRNAs enabled the characterization of lymphoma neoplasms, reflecting the lymphoma type, cell of origin and/or discrete oncogene alterations. Comparative analysis of BL and DLBCL yielded 19 differentially expressed miRNAs, which were confirmed in a second confirmation series of 71 paraffin-embedded samples. The set of differentially expressed miRNAs found here expands the range of potential diagnostic markers for lymphoma diagnosis, especially when differential diagnosis of BL and DLBCL is required

    The Role of Thioredoxin Reductases in Brain Development

    Get PDF
    The thioredoxin-dependent system is an essential regulator of cellular redox balance. Since oxidative stress has been linked with neurodegenerative disease, we studied the roles of thioredoxin reductases in brain using mice with nervous system (NS)-specific deletion of cytosolic (Txnrd1) and mitochondrial (Txnrd2) thioredoxin reductase. While NS-specific Txnrd2 null mice develop normally, mice lacking Txnrd1 in the NS were significantly smaller and displayed ataxia and tremor. A striking patterned cerebellar hypoplasia was observed. Proliferation of the external granular layer (EGL) was strongly reduced and fissure formation and laminar organisation of the cerebellar cortex was impaired in the rostral portion of the cerebellum. Purkinje cells were ectopically located and their dendrites stunted. The Bergmann glial network was disorganized and showed a pronounced reduction in fiber strength. Cerebellar hypoplasia did not result from increased apoptosis, but from decreased proliferation of granule cell precursors within the EGL. Of note, neuron-specific inactivation of Txnrd1 did not result in cerebellar hypoplasia, suggesting a vital role for Txnrd1 in Bergmann glia or neuronal precursor cells

    Inhibition of Interferon Induction and Action by the Nairovirus Nairobi Sheep Disease Virus/Ganjam Virus

    Get PDF
    The Nairoviruses are an important group of tick-borne viruses that includes pathogens of man (Crimean Congo hemorrhagic fever virus) and livestock animals (Dugbe virus, Nairobi sheep disease virus (NSDV)). NSDV is found in large parts of East Africa and the Indian subcontinent (where it is known as Ganjam virus). We have investigated the ability of NSDV to antagonise the induction and actions of interferon. Both pathogenic and apathogenic isolates could actively inhibit the induction of type 1 interferon, and also blocked the signalling pathways of both type 1 and type 2 interferons. Using transient expression of viral proteins or sections of viral proteins, these activities all mapped to the ovarian tumour-like protease domain (OTU) found in the viral RNA polymerase. Virus infection, or expression of this OTU domain in transfected cells, led to a great reduction in the incorporation of ubiquitin or ISG15 protein into host cell proteins. Point mutations in the OTU that inhibited the protease activity also prevented it from antagonising interferon induction and action. Interestingly, a mutation at a peripheral site, which had little apparent effect on the ability of the OTU to inhibit ubiquitination and ISG15ylation, removed the ability of the OTU to block the induction of type 1 and the action of type 2 interferons, but had a lesser effect on the ability to block type 1 interferon action, suggesting that targets other than ubiquitin and ISG15 may be involved in the actions of the viral OTU

    TNFAIP3 Maintains Intestinal Barrier Function and Supports Epithelial Cell Tight Junctions

    Get PDF
    Tight junctions between intestinal epithelial cells mediate the permeability of the intestinal barrier, and loss of intestinal barrier function mediated by TNF signaling is associated with the inflammatory pathophysiology observed in Crohn's disease and celiac disease. Thus, factors that modulate intestinal epithelial cell response to TNF may be critical for the maintenance of barrier function. TNF alpha-induced protein 3 (TNFAIP3) is a cytosolic protein that acts in a negative feedback loop to regulate cell signaling induced by Toll-like receptor ligands and TNF, suggesting that TNFAIP3 may play a role in regulating the intestinal barrier. To investigate the specific role of TNFAIP3 in intestinal barrier function we assessed barrier permeability in TNFAIP3−/− mice and LPS-treated villin-TNFAIP3 transgenic mice. TNFAIP3−/− mice had greater intestinal permeability compared to wild-type littermates, while villin-TNFAIP3 transgenic mice were protected from increases in permeability seen within LPS-treated wild-type littermates, indicating that barrier permeability is controlled by TNFAIP3. In cultured human intestinal epithelial cell lines, TNFAIP3 expression regulated both TNF-induced and myosin light chain kinase-regulated tight junction dynamics but did not affect myosin light chain kinase activity. Immunohistochemistry of mouse intestine revealed that TNFAIP3 expression inhibits LPS-induced loss of the tight junction protein occludin from the apical border of the intestinal epithelium. We also found that TNFAIP3 deubiquitinates polyubiquitinated occludin. These in vivo and in vitro studies support the role of TNFAIP3 in promoting intestinal epithelial barrier integrity and demonstrate its novel ability to maintain intestinal homeostasis through tight junction protein regulation

    Progressive effects of N-myc deficiency on proliferation, neurogenesis, and morphogenesis in the olfactory epithelium

    Get PDF
    This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License.N-myc belongs to the myc proto-oncogene family, which is involved in numerous cellular processes such as proliferation, growth, apoptosis, and differentiation. Conditional deletion of N-myc in the mouse nervous system disrupted brain development, indicating that N-myc plays an essential role during neural development. How the development of the olfactory epithelium and neurogenesis within are affected by the loss of N-myc has, however, not been determined. To address these issues, we examined an N-mycFoxg1Cre conditional mouse line, in which N-myc is depleted in the olfactory epithelium. First changes in N-myc mutants were detected at E11.5, with reduced proliferation and neurogenesis in a slightly smaller olfactory epithelium. The phenotype was more pronounced at E13.5, with a complete lack of Hes5-positive progenitor cells, decreased proliferation, and neurogenesis. In addition, stereological analyses revealed reduced cell size of post-mitotic neurons in the olfactory epithelium, which contributed to a smaller olfactory pit. Furthermore, we observed diminished proliferation and neurogenesis also in the vomeronasal organ, which likewise was reduced in size. In addition, the generation of gonadotropin-releasing hormone neurons was severely reduced in N-myc mutants. Thus, diminished neurogenesis and proliferation in combination with smaller neurons might explain the morphological defects in the N-myc depleted olfactory structures. Moreover, our results suggest an important role for N-myc in regulating ongoing neurogenesis, in part by maintaining the Hes5-positive progenitor pool. In summary, our results provide evidence that N-myc deficiency in the olfactory epithelium progressively diminishes proliferation and neurogenesis with negative consequences at structural and cellular levels. © The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.Contract grant sponsor: The Swedish Research Council, Umeå University , Märta Lundqvist foundation and the Kempe foundation. Contract grant sponsor: Spanish MinEco; contract grant number: BFU2010–15477.Peer Reviewe

    Progressive effects of N‐myc

    No full text
    corecore