2,122 research outputs found

    Congruence modularity implies cyclic terms for finite algebras

    Get PDF
    An n-ary operation f : A(n) -> A is called cyclic if it is idempotent and f(a(1), a(2), a(3), ... , a(n)) = f(a(2), a(3), ... , a(n), a(1)) for every a(1), ... , a(n) is an element of A. We prove that every finite algebra A in a congruence modular variety has a p-ary cyclic term operation for any prime p greater than vertical bar A vertical bar

    Relativistic calculations of charge transfer probabilities in U92+ - U91+(1s) collisions using the basis set of cubic Hermite splines

    Full text link
    A new approach for solving the time-dependent two-center Dirac equation is presented. The method is based on using the finite basis set of cubic Hermite splines on a two-dimensional lattice. The Dirac equation is treated in rotating reference frame. The collision of U92+ (as a projectile) and U91+ (as a target) is considered at energy E_lab=6 MeV/u. The charge transfer probabilities are calculated for different values of the impact parameter. The obtained results are compared with the previous calculations [I. I. Tupitsyn et al., Phys. Rev. A 82, 042701 (2010)], where a method based on atomic-like Dirac-Sturm orbitals was employed. This work can provide a new tool for investigation of quantum electrodynamics effects in heavy-ion collisions near the supercritical regime

    Weakly-nonlocal Symplectic Structures, Whitham method, and weakly-nonlocal Symplectic Structures of Hydrodynamic Type

    Full text link
    We consider the special type of the field-theoretical Symplectic structures called weakly nonlocal. The structures of this type are in particular very common for the integrable systems like KdV or NLS. We introduce here the special class of the weakly nonlocal Symplectic structures which we call the weakly nonlocal Symplectic structures of Hydrodynamic Type. We investigate then the connection of such structures with the Whitham averaging method and propose the procedure of "averaging" of the weakly nonlocal Symplectic structures. The averaging procedure gives the weakly nonlocal Symplectic Structure of Hydrodynamic Type for the corresponding Whitham system. The procedure gives also the "action variables" corresponding to the wave numbers of mm-phase solutions of initial system which give the additional conservation laws for the Whitham system.Comment: 64 pages, Late

    Relativistic calculations of the U91+(1s)-U92+ collision using the finite basis set of cubic Hermite splines on a lattice in coordinate space

    Full text link
    A new method for solving the time-dependent two-center Dirac equation is developed. The approach is based on the using of the finite basis of cubic Hermite splines on a three-dimensional lattice in the coordinate space. The relativistic calculations of the excitation and charge-transfer probabilities in the U91+(1s)-U92+ collisions in two and three dimensional approaches are performed. The obtained results are compared with our previous calculations employing the Dirac-Sturm basis sets [I.I. Tupitsyn et al., Phys. Rev. A 82, 042701 (2010)]. The role of the negative-energy Dirac spectrum is investigated within the monopole approximation

    Why nonlocal recursion operators produce local symmetries: new results and applications

    Full text link
    It is well known that integrable hierarchies in (1+1) dimensions are local while the recursion operators that generate them usually contain nonlocal terms. We resolve this apparent discrepancy by providing simple and universal sufficient conditions for a (nonlocal) recursion operator in (1+1) dimensions to generate a hierarchy of local symmetries. These conditions are satisfied by virtually all known today recursion operators and are much easier to verify than those found in earlier work. We also give explicit formulas for the nonlocal parts of higher recursion operators, Poisson and symplectic structures of integrable systems in (1+1) dimensions. Using these two results we prove, under some natural assumptions, the Maltsev--Novikov conjecture stating that higher Hamiltonian, symplectic and recursion operators of integrable systems in (1+1) dimensions are weakly nonlocal, i.e., the coefficients of these operators are local and these operators contain at most one integration operator in each term.Comment: 10 pages, LaTeX 2e, final versio

    Calculation of the moscovium ground-state energy by quantum algorithms

    Full text link
    We investigate the possibility to calculate the ground-state energy of the atomic systems on a quantum computer. For this purpose we evaluate the lowest binding energy of the moscovium atom with the use of the iterative phase estimation and variational quantum eigensolver. The calculations by the variational quantum eigensolver are performed with a disentangled unitary coupled cluster ansatz and with various types of hardware-efficient ansatze. The optimization is performed with the use of the Adam and Quantum Natural Gradients procedures. The scalability of the ansatze and optimizers is tested by increasing the size of the basis set and the number of active electrons. The number of gates required for the iterative phase estimation and variational quantum eigensolver is also estimated.Comment: 29 pages, 5 figure

    Quasiperiodic functions theory and the superlattice potentials for a two-dimensional electron gas

    Full text link
    We consider Novikov problem of the classification of level curves of quasiperiodic functions on the plane and its connection with the conductivity of two-dimensional electron gas in the presence of both orthogonal magnetic field and the superlattice potentials of special type. We show that the modulation techniques used in the recent papers on the 2D heterostructures permit to obtain the general quasiperiodic potentials for 2D electron gas and consider the asymptotic limit of conductivity when τ\tau \to \infty. Using the theory of quasiperiodic functions we introduce here the topological characteristics of such potentials observable in the conductivity. The corresponding characteristics are the direct analog of the "topological numbers" introduced previously in the conductivity of normal metals.Comment: Revtex, 16 pages, 12 figure

    Relativistic Stark energies of hydrogen-like ions

    Full text link
    The relativistic energies and widths of hydrogen-like ions exposed to the uniform electric field are calculated. The calculations are performed for the ground and lowest excited states using the complex scaling technique in combination with a finite-basis method. The obtained results are compared with the non-relativistic values. The role of relativistic effects is investigated.Comment: 21 pages, 5 figure
    corecore