Abstract

We consider Novikov problem of the classification of level curves of quasiperiodic functions on the plane and its connection with the conductivity of two-dimensional electron gas in the presence of both orthogonal magnetic field and the superlattice potentials of special type. We show that the modulation techniques used in the recent papers on the 2D heterostructures permit to obtain the general quasiperiodic potentials for 2D electron gas and consider the asymptotic limit of conductivity when τ\tau \to \infty. Using the theory of quasiperiodic functions we introduce here the topological characteristics of such potentials observable in the conductivity. The corresponding characteristics are the direct analog of the "topological numbers" introduced previously in the conductivity of normal metals.Comment: Revtex, 16 pages, 12 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/12/2019