6,858 research outputs found
Change of sagittal spinal alignment and its association with pain and function after lumbar surgery augmented with an interspinous implant
Background: Interspinous spacer/implants like the Device for Intervertebral Assisted Motion (DIAM™) are controversially yet commonly used in the surgical treatment of lumbar degenerative pathologies. Criticism is based on ill-defined indications, lack of superiority over decompression, and a poorly understood mechanical effect. Yet, continued use by surgeons implies their perceived clinical merit. We examined radiographic spinal alignment for 12 months, and pain and function for 24 months, after DIAM-augmented surgery to improve the understanding of the mechanical effect relating to clinical outcomes in patients.
Methods: We undertook a single-surgeon prospective, longitudinal study of 40 patients (20 F, 20 M) who received DIAM-augmented surgery in treatment of their symptomatic lumbar degenerative condition. Outcomes measured included sagittal spinal alignment (lumbar lordosis, sacral inclination, primary (PDA), supradjacent (SDA) disc angles, and regional sagittal balance (RSB; standing lateral radiographs), and back and leg pain (visual analogue scale; VAS) and function (Oswestry Disability Index; ODI). Responders were identified as those with clinically meaningful improvement to pain (>20%) and function (>15%) at 24 months postoperatively; features of sagittal spinal alignment between responders and non-responders were examined.
Results: Sagittal alignment was unchanged at 12 months. At 6 weeks postoperatively, PDA (mean (SD)) reduced by 2.2° (4.0°; p < 0.01) and more-so in back pain non-responders (3.8° (3.2°)) than responders (0.7° (4.4°); p < 0.05). Positive preoperative RSB in responders (26.7Rmm (42.3Rmm); Rmm is a system-relative measure) decreased at 6 weeks (by 3.1Rmm (9.1Rmm)). Non-responders had a negative RSB preoperatively (−1.0Rmm (32.0Rmm)) and increased at 6 weeks (11.2Rmm (15.5Rmm); p < 0.05). Clinically meaningful improvement for the whole cohort for back pain and function were observed to 24 months (back pain: 25.0% (28.0); function: 15.4% (17.6); both p < 0.0001).
Conclusions: Unaltered sagittal alignment at 12 months was not related to symptoms after DIAM-augmented lumbar surgery. Subtle early flattening at the index disc angle was not maintained. Preoperative and early post-operative sagittal alignment may indicate response after DIAM-augmented surgery for mixed lumbar pathologies. Further investigation toward defining indications and patient suitability is warranted
Part-time of what? Job quality and part-time employment in the legal profession in Australia
This article examines the quality of part-time employment for solicitors in private practice in Australia. Although full-time jobs based on long hours are dominant in the legal profession, part-time jobs
Electron-impact excitation of X 1Sigma<sub>g</sub><sup>+</sup>(v[double-prime]=0) to the a[double-prime] 1Sigma<sub>g</sub><sup>+</sup>, b 1Piu, c3 1Piu, o3 1Piu, b[prime] 1Sigma<sub>u</sub><sup>+</sup>, c<sub>4</sub><sup>[prime]</sup> 1Sigma<sub>u</sub><sup>+</sup>, G 3Piu, and F 3Piu states of molecular nitrogen
Measurements of differential cross sections (DCSs) for electron-impact excitation of the a[double-prime] 1Sigmag+, b 1Piu, c3 1Piu, o3 1Piu, b[prime] 1Sigmau+, c4[prime] 1Sigmau+, G 3Piu, and F 3Piu states in N2 from the X 1Sigmag+(v[double-prime]=0) ground level are presented. The DCSs were obtained from energy-loss spectra in the region of 12 to 13.82 eV measured at incident energies of 17.5, 20, 30, 50, and 100 eV and for scattering angles ranging from 2° to 130°. The analysis of the spectra follows a different algorithm from that employed in a previous study of N2 for the valence states [Khakoo et al. Phys. Rev. A 71, 062703 (2005)], since the 1Piu and 1Sigmau+ states form strongly interacting Rydberg-valence series. The results are compared with existing data
Assessing the Efficacy of MODIS Satellite-derived Start of Growing Season for Jurisdictional Determination of East Texas Bottomland Hardwood Wetlands
Introduction: Crucial to the determination of a jurisdictional wetland is the definition of “growing season”. Satellite imagery is being utilized in other ecological applications, but is lagging in wetland growing season determination. Both cost and temporal limitations historically have restrained use of satellite imagery in assessing the start up of the growing season. Multiple commercial satellites are available that provide high resolution imagery, but the cost are prohibitive for most studies. The National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) jointly manage the Landsat and the Moderate-resolution Imaging Spectroradiometer (MODIS) satellite programs. Landsat Enhanced Thematic Mapper Plus images an area every sixteen (16) days. The rapid biological changes indicating the start up of the growing season must be captured more frequently to successfully use satellite imagery for such a time dependent event. In 1999 NASA launched the MODIS program with the Terra satellite and followed with the Aqua satellite in 2000. Terra’s orbit around the Earth is timed so that it passes from north to south across the equator in the morning. Aqua will pass south to north over the equator in the afternoon. This continual, comprehensive coverage allows MODIS to complete an electromagnetic picture of the globe every day. MODIS imagery is available on a daily basis, but the trade-off for the increased speed at which the satellites travel is a lower resolution image when compared to other satellite systems. Research utilizing MODIS for studying vegetation phenology is beginning to emerge, but there is a lack of validation through ground observation for these studies. (Figure 1 and Figure 2
Decentralised Learning MACs for Collision-free Access in WLANs
By combining the features of CSMA and TDMA, fully decentralised WLAN MAC
schemes have recently been proposed that converge to collision-free schedules.
In this paper we describe a MAC with optimal long-run throughput that is almost
decentralised. We then design two \changed{schemes} that are practically
realisable, decentralised approximations of this optimal scheme and operate
with different amounts of sensing information. We achieve this by (1)
introducing learning algorithms that can substantially speed up convergence to
collision free operation; (2) developing a decentralised schedule length
adaptation scheme that provides long-run fair (uniform) access to the medium
while maintaining collision-free access for arbitrary numbers of stations
Evidence for nodal superconductivity in LaFePO
In several iron-arsenide superconductors there is strong evidence for a fully
gapped superconducting state consistent with either a conventional s-wave
symmetry or an unusual state where there the gap changes sign between
the electron and hole Fermi surface sheets. Here we report measurements of the
penetration depth in very clean samples of the related
iron-phosphide superconductor, LaFePO, at temperatures down to 100 mK.
We find that varies almost perfectly linearly with strongly
suggesting the presence of gap nodes in this compound. Taken together with
other data, this suggests the gap function may not be generic to all pnictide
superconductors
Evaluating the successful implementation of evidence into practice using the PARiHS framework : theoretical and practical challenges
Background
The PARiHS framework (Promoting Action on Research Implementation in Health Services) has proved to be a useful practical and conceptual heuristic for many researchers and practitioners in framing their research or knowledge translation endeavours. However, as a conceptual framework it still remains untested and therefore its contribution to the overall development and testing of theory in the field of implementation science is largely unquantified.
Discussion
This being the case, the paper provides an integrated summary of our conceptual and theoretical thinking so far and introduces a typology (derived from social policy analysis) used to distinguish between the terms conceptual framework, theory and model – important definitional and conceptual issues in trying to refine theoretical and methodological approaches to knowledge translation.
Secondly, the paper describes the next phase of our work, in particular concentrating on the conceptual thinking and mapping that has led to the generation of the hypothesis that the PARiHS framework is best utilised as a two-stage process: as a preliminary (diagnostic and evaluative) measure of the elements and sub-elements of evidence (E) and context (C), and then using the aggregated data from these measures to determine the most appropriate facilitation method. The exact nature of the intervention is thus determined by the specific actors in the specific context at a specific time and place.
In the process of refining this next phase of our work, we have had to consider the wider issues around the use of theories to inform and shape our research activity; the ongoing challenges of developing robust and sensitive measures; facilitation as an intervention for getting research into practice; and finally to note how the current debates around evidence into practice are adopting wider notions that fit innovations more generally.
Summary
The paper concludes by suggesting that the future direction of the work on the PARiHS framework is to develop a two-stage diagnostic and evaluative approach, where the intervention is shaped and moulded by the information gathered about the specific situation and from participating stakeholders. In order to expedite the generation of new evidence and testing of emerging theories, we suggest the formation of an international research implementation science collaborative that can systematically collect and analyse experiences of using and testing the PARiHS framework and similar conceptual and theoretical approaches.
We also recommend further refinement of the definitions around conceptual framework, theory, and model, suggesting a wider discussion that embraces multiple epistemological and ontological perspectives
Bayesian optimization of the PC algorithm for learning Gaussian Bayesian networks
The PC algorithm is a popular method for learning the structure of Gaussian
Bayesian networks. It carries out statistical tests to determine absent edges
in the network. It is hence governed by two parameters: (i) The type of test,
and (ii) its significance level. These parameters are usually set to values
recommended by an expert. Nevertheless, such an approach can suffer from human
bias, leading to suboptimal reconstruction results. In this paper we consider a
more principled approach for choosing these parameters in an automatic way. For
this we optimize a reconstruction score evaluated on a set of different
Gaussian Bayesian networks. This objective is expensive to evaluate and lacks a
closed-form expression, which means that Bayesian optimization (BO) is a
natural choice. BO methods use a model to guide the search and are hence able
to exploit smoothness properties of the objective surface. We show that the
parameters found by a BO method outperform those found by a random search
strategy and the expert recommendation. Importantly, we have found that an
often overlooked statistical test provides the best over-all reconstruction
results
The Integration of Internal and External Training Load Metrics in Hurling
The current study aimed to assess the relationship between the hurling player's fitness profile and integrated training load (TL) metrics. Twenty-five hurling players performed treadmill testing for VO2max, the speed at blood lactate concentrations of 2 mmol•L-1 (vLT) and 4 mmol•L-1 (vOBLA) and the heart rate-blood lactate profile for calculation of individual training impulse (iTRIMP). The total distance (TD; m), high speed distance (HSD; m) and sprint distance (SD; m) covered were measured using GPS technology (4-Hz, VX Sport, Lower Hutt, New Zealand) which allowed for the measurement of the external TL. The external TL was divided by the internal TL to form integration ratios. Pearson correlation analyses allowed for the assessment of the relationships between fitness measures and the ratios to performance during simulated match play. External measures of the TL alone showed limited correlations with fitness measures. Integrated TL ratios showed significant relationships with fitness measures in players. TD:iTRIMP was correlated with aerobic fitness measures VO2max (r = 0.524; p = 0.006; 95% CI: 0.224 to 0.754; large) and vOBLA (r = 0.559; p = 0.003; 95% CI: 0.254 to 0.854; large). HSD:iTRIMP also correlated with aerobic markers for fitness vLT (r = 0.502; p = 0.009; 95% CI: 0.204 to 0.801; large); vOBLA (r = 0.407; p = 0.039; 95% CI: 0.024 to 0.644; moderate). Interestingly SD:iTRIMP also showed significant correlations with vLT (r = 0.611; p = 0.001; 95% CI: 0.324 to 0.754; large). The current study showed that TL ratios can provide practitioners with a measure of fitness as external performance alone showed limited relationships with aerobic fitness measures. © Editorial Committee of Journal of Human Kinetics 2016
- …
