169 research outputs found

    Snow cover and snow albedo changes in the central Andes of Chile and Argentina from daily MODIS observations (2000-2016)

    Get PDF
    The variables of snow cover extent (SCE), snow cover duration (SCD), and snow albedo (SAL) are primary factors determining the surface energy balance and hydrological response of the cryosphere, influencing snow pack and glacier mass-balance, melt, and runoff conditions. This study examines spatiotemporal patterns and trends in SCE, SCD, and SAL (2000–2016; 16 years) for central Chilean and Argentinean Andes using the MODIS MOD10A1 C6 daily snow product. Observed changes in these variables are analyzed in relation to climatic variability by using ground truth observations (meteorological data from the El Yeso Embalse and Valle Nevado weather stations) and the Multivariate El Niño index (MEI) data. We identified significant downward trends in both SCE and SAL, especially during the onset and offset of snow seasons. SCE and SAL showed high inter-annual variability which correlate significantly with MEI applied with a one-month time-lag. SCE and SCD decreased by an average of ~13 ± 2% and 43 ± 20 days respectively, over the study period. Analysis of spatial pattern of SCE indicates a slightly greater reduction on the eastern side (~14 ± 2%) of the Andes Cordillera compared to the western side (~12 ± 3%). The downward SCE, SAL, and SCD trends identified in this study are likely to have adverse impacts on downstream water resource availability to agricultural and densely populated regions in central Chile and Argentina

    Multi-decadal marine- and land-terminating glacier recession in the Ammassalik region, southeast Greenland

    Get PDF
    Landsat imagery was applied to elucidate glacier fluctuations of land- and marine-terminating outlet glaciers from the Greenland Ice Sheet (GrIS) and local land-terminating glaciers and ice caps (GIC) peripheral to the GrIS in the Ammassalik region, Southeast Greenland, during the period 1972–2011. Data from 21 marine-terminating glaciers (including the glaciers Helheim, Midgaard, and Fenris), the GrIS land-terminating margin, and 35 GIC were examined and compared to observed atmospheric air temperatures, precipitation, and reconstructed ocean water temperatures (at 400 m depth in the Irminger Sea). Here, we document that net glacier recession has occurred since 1972 in the Ammassalik region for all glacier types and sizes, except for three GIC. The land-terminating GrIS and GIC reflect lower marginal and areal changes than the marine-terminating outlet glaciers. The mean annual land-terminating GrIS and GIC margin recessions were about three to five times lower than the GrIS marine-terminating recession. The marine-terminating outlet glaciers had an average net frontal retreat for 1999–2011 of 0.098 km yr<sup>−1</sup>, which was significantly higher than in previous sub-periods 1972–1986 and 1986–1999. For the marine-terminating GrIS, the annual areal recession rate has been decreasing since 1972, while increasing for the land-terminating GrIS since 1986. On average for all the observed GIC, a mean net frontal retreat for 1986–2011 of 0.010 ± 0.006 km yr<sup>−1</sup> and a mean areal recession of around 1% per year occurred; overall for all observed GIC, a mean recession rate of 27 ± 24% occurred based on the 1986 GIC area. Since 1986, five GIC melted away in the Ammassalik area

    Surface velocity fluctuations for Glaciar Universidad, central Chile, between 1967 and 2015

    Get PDF
    For the Andes Cordillera, where observed mass-balance records are sparse, long-term glacier velocity measurements potentially represent a useful tool for assessing glacier health. Utilising manual and automatic feature-tracking techniques applied to Corona, Landsat and ASTER satellite imagery, this paper presents surface velocity fluctuations for Glaciar Universidad between 1967 and 1969, and 1985 and 2015, the longest such time series available for the Andes Cordillera, outside Patagonia. This time series reveals an increase in the surface velocities of the main glacier trunk between 1967 and 1987 (~90%) followed by a deceleration between 1987 and 2015 (~80%), with ice velocities observed between 2014 and 2015 possibly representing a 48 a low. In response to the surface velocity fluctuations, the glacier front advanced between 1985 and 1992 (cumulative change of 137 ± 14 m), and again to a lesser magnitude during the 1996–98 and 2004–08 periods. Although having exhibited possible surge behaviour during the 1940s, the synchrony of the glacier changes presented for Glaciar Universidad with those reported for nearby glaciers, suggests that this glacier is responding to climatic trends. If the above scenario is true, the results indicate a general pattern of increasingly negative glacier mass-balance conditions since the late 1980

    Increasing mass loss from Greenland's Mittivakkat Gletscher

    Get PDF
    Warming in the Arctic during the past several decades has caused glaciers to thin and retreat, and recent mass loss from the Greenland Ice Sheet is well documented. Local glaciers peripheral to the ice sheet are also retreating, but few mass-balance observations are available to quantify that retreat and determine the extent to which these glaciers are out of equilibrium with present-day climate. Here, we document record mass loss in 2009/10 for the Mittivakkat Gletscher (henceforth MG), the only local glacier in Greenland for which there exist long-term observations of both the surface mass balance and glacier front fluctuations. We attribute this mass loss primarily to record high mean summer (June–August) temperatures in combination with lower-than-average winter precipitation. Also, we use the 15-yr mass-balance record to estimate present-day and equilibrium accumulation-area ratios for the MG. We show that the glacier is significantly out of balance and will likely lose at least 70% of its current area and 80% of its volume even in the absence of further climate changes. Temperature records from coastal stations in Southeast Greenland suggest that recent MG mass losses are not merely a local phenomenon, but are indicative of glacier changes in the broader region. Mass-balance observations for the MG therefore provide unique documentation of the general retreat of Southeast Greenland's local glaciers under ongoing climate warming

    The Chemistry of Griseofulvin

    Get PDF

    Health-related quality of life after vertebral or hip fracture: a seven-year follow-up study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The negative impact of vertebral and hip low-energy fractures on health-related quality-of-life (HRQOL) has been demonstrated previously, but few prospective long-term follow-up studies have been conducted. This study aims to (i) investigate the changes and long-term impact of vertebral or hip fracture and between fracture groups on HRQOL in postmenopausal women prospectively between two and seven years after the inclusion fracture, (ii) compare HRQOL results between fracture and reference groups and (iii) study the relationship between HRQOL and physical performance, spinal deformity index and bone mineral density at seven-year follow-up.</p> <p>Methods</p> <p>Ninety-one women examined two years after a low-energy vertebral or hip fracture were invited to a new examination seven years after the diagnosis. HRQOL was examined using the SF-36 questionnaire and was compared with an age and sex-matched reference group. Physical function was assessed using tests and questionnaires. Bone mineral density was measured. Radiographs of the spine were evaluated using the visual semiquantitative technique. A longitudinal and cross-sectional design was used in this study. Statistical analyses included descriptive statistics, Student's <it>t</it>-tests, ANCOVA, and partial correlation.</p> <p>Results</p> <p>Sixty-seven women participated. In the 42 women (mean age 75.8, SD 4.7) with vertebral fracture as inclusion fracture, bodily pain had deteriorated between two and seven years and might be explained by new fracture. Remaining pronounced reduction of HRQOL was seen in all domains except general health and mental health at seven-year follow-up in women with vertebral fractures compared to the reference group (p < 0.05). All 25 women (mean age 75.0, SD 4.7) with hip fracture as inclusion fracture had no significant changes in HRQOL between two and seven years and did not differ from the reference group regarding HRQOL after seven years. The vertebral group had significantly lower values for bodily pain, vitality, role-emotional function and mental health compared to the hip group. HRQOL showed a positive relationship between physical activity, static balance and handgrip strength.</p> <p>Conclusion</p> <p>The long-term reduction of HRQOL in women with vertebral fracture emerged clearly in this study. The relationships between HRQOL and physical performance in women with vertebral and hip fracture raise questions for more research.</p
    • …
    corecore