14 research outputs found

    Waste Heat Driven Integrated Membrane Distillation for Concentrating Nutrients and Process Water Recovery at a Thermophilic Biogas Plant

    Get PDF
    To efficiently utilize low-concentrate digestate nutrients, further treatment is needed to decrease their volume, recover process water, and increase nutrient concentrations. Membrane distillation (MD) is a thermally driven process that is advantageous due to its ability to harness low-grade waste heat to treat highly complex wastewater streams. This study assessed the techno-economic performance of integrating MD for two-fold concentrations of nutrients and the recovery of process water from digestate at a thermophilic biogas plant. Thermal assessment showed that the recovered waste heat from flue gas and digestate fully met the thermal energy demand of MD and saved 20% of boiler energy by heating incoming slurry. The permeate flux from MD was 3.5 L/(m(2)h) and 3.1 L/(m(2)h) at 66 degrees C and 61 degrees C digestate inlet temperatures during winter and summer, respectively. With internal heat recovery, the specific heat demand for MD was 80 kWh/m(3) and 100 kWh/m(3) in winter and summer, respectively. The unit cost of MD permeate was estimated to be 3.6 euro/m(3) and 4.1 euro/m(3) at a digestate feed temperature of 66 degrees C and 61 degrees C (with heat recovery), and 7.6 euro/m(3) and 9.1 euro/m(3) (without heat recovery) in winter and summer, respectively. However, cost sensitivity analyses showed that waste heat recovery and thermal energy cost variations had a significant impact on the MD permeate production cost. Nevertheless, the economic assessment indicated that the thermal integration of a biogas plant with industrial-scale MD digestate treatment capacity could be economically feasible, with winter being more economically favorable due to higher waste heat recovery

    Biogas potential of the reject fraction from the biogas plant KungsÀngens gÄrd

    No full text
    Den totala biogasproduktionen i Sverige 2009 var 1,4 TWh och 22 % av biogasen producerades i samrötningsanlÀggningar. Sedan 2005 Àr det förbjudet att deponera organiskt avfall, vilket har gjort att produktionen frÄn samrötningsanlÀggningar har ökat de senaste Ären. Den totala biogaspotentialen i Sverige Àr ungefÀr 15 TWh och dÀr stÄr lantbruket för över 70 %. Avloppsslam, avfall frÄn livsmedelsindustrin och matavfall stÄr för den resterande delen. Det Àr Àven dessa tre rÄvarugrupper som har störst lönsamhet med dagens teknik. Av dessa rÄvarugrupper finns den största kvarvarande potentialen hos matavfall. Problemet med matavfall Àr att det ofta innehÄller föroreningar som mÄste sorteras bort för att inte orsaka driftstörningar. Detta orsakar ofta problem pÄ grund av att organiskt material hamnar i rejektet.    KungsÀngens gÄrd Àr en samrötningsanlÀggning som producerar biogas frÄn olika typer av organiska restprodukter. Under 2009 behandlades 7 536 ton material, av detta var 58 % matavfall. Av inkommande material sorterades 938 ton ut och lÀmnade anlÀggningen som rejekt. Under 2011 förvÀntas mÀngden inkommande material öka. Dessutom förvÀntas andelen matavfall öka till 90 % vilket kommer att ge Ànnu större rejektmÀngder. Syftet med detta examensarbete var att genom analyser och satsvisa utrötningsförsök bestÀmma den kemiska sammansÀttningen samt metanpotentialen hos de olika rejektfraktionerna frÄn biogasanlÀggningen KungsÀngens gÄrd. En utredning gjordes för att undersöka vilka möjligheter och tekniker som potentiellt skulle kunna anvÀndas för att framstÀlla biogas av rejektet och ocksÄ vilka möjligheter som finns för att effektivisera befintlig utrustning. Resultatet frÄn utrötningsförsöken visade att metanpotentialen för de olika rejektfraktionerna var hög och kan jÀmföras med vad som kan förvÀntas av kÀllsorterat matavfall. Om rejektet som producerades under 2010 skulle anvÀndas för biogasproduktion skulle denna metanpotential motsvara 10 % av den totala biogasproduktionen vid KungsÀngens gÄrd under 2010. Utredningen visar att det bÀsta alternativet för att röta rejektet i sitt befintliga skick Àr satsvis torrötning. OsÀkerheten kring torrötning Àr dock stor pÄ grund av att det i Sverige inte finns nÄgra torrötningsanlÀggningar och dÀrmed Àr kunskapsnivÄn relativt lÄg.The biogas production in Sweden in 2009 was 1,4 TWh and 22 % of the biogas was produced in co-digestion plants. Since 2005 it is prohibited to deposit organic waste and this has resulted in an increased biogas production from this type of waste materials in recent years. The total biogas potential in Sweden is approximately 15 TWh and 70 % of that comes from agriculture wastes. Sewage sludge, waste from food industry and food waste accounts for the rest. It is also these three commodity groups that have the greatest profitability with today's technology. Among these groups, food waste have the largest remaining biogas potential. The problem with food waste is that it often contains impurities that must be sorted out in order to avoid operational problems. The out sorting process often causes problems and typically organic material is lost in the reject fraction. The biogas plant KungsÀngens gÄrd is a co-digestion plant that produces biogas from different types of organic residues. In 2009 about 7 536 tons of material were treated, of which 58 % was food waste. Of the incoming material 938 tons were sorted out as reject. In 2011 the amount of incoming material is expected to increase. In addition, the proportion of food waste is expected to increase to 90 %, which will result in even larger amounts of reject. The purpose of this study was to perform analysis and batch digestion experiments to determine the chemical composition and methane potential of the reject from the biogas plant KungsÀngens gÄrd. An investigation was also made to examine methods and technologies that potentially could be used to produce biogas from the reject. The results from the batch digestion experiments showed that the methane potential of the different reject fractions was high and it can be compared with what might be expected of source separated food waste. If the reject that was produced in 2010 would be used for biogas production, this methane potential is equal to 10 % of the total production of biogas at KungsÀngens gÄrd in 2010. The investigation shows that dry fermentation with a batch system is the only technology that potentially could produce biogas from the reject in its existing form. There are no dry fermentation plants in Sweden and therefore the level of knowledge is relatively low. Because of that it is hard to estimate the profitability and efficiency of dry fermentation plants

    Biogas potential of the reject fraction from the biogas plant KungsÀngens gÄrd

    No full text
    Den totala biogasproduktionen i Sverige 2009 var 1,4 TWh och 22 % av biogasen producerades i samrötningsanlÀggningar. Sedan 2005 Àr det förbjudet att deponera organiskt avfall, vilket har gjort att produktionen frÄn samrötningsanlÀggningar har ökat de senaste Ären. Den totala biogaspotentialen i Sverige Àr ungefÀr 15 TWh och dÀr stÄr lantbruket för över 70 %. Avloppsslam, avfall frÄn livsmedelsindustrin och matavfall stÄr för den resterande delen. Det Àr Àven dessa tre rÄvarugrupper som har störst lönsamhet med dagens teknik. Av dessa rÄvarugrupper finns den största kvarvarande potentialen hos matavfall. Problemet med matavfall Àr att det ofta innehÄller föroreningar som mÄste sorteras bort för att inte orsaka driftstörningar. Detta orsakar ofta problem pÄ grund av att organiskt material hamnar i rejektet.    KungsÀngens gÄrd Àr en samrötningsanlÀggning som producerar biogas frÄn olika typer av organiska restprodukter. Under 2009 behandlades 7 536 ton material, av detta var 58 % matavfall. Av inkommande material sorterades 938 ton ut och lÀmnade anlÀggningen som rejekt. Under 2011 förvÀntas mÀngden inkommande material öka. Dessutom förvÀntas andelen matavfall öka till 90 % vilket kommer att ge Ànnu större rejektmÀngder. Syftet med detta examensarbete var att genom analyser och satsvisa utrötningsförsök bestÀmma den kemiska sammansÀttningen samt metanpotentialen hos de olika rejektfraktionerna frÄn biogasanlÀggningen KungsÀngens gÄrd. En utredning gjordes för att undersöka vilka möjligheter och tekniker som potentiellt skulle kunna anvÀndas för att framstÀlla biogas av rejektet och ocksÄ vilka möjligheter som finns för att effektivisera befintlig utrustning. Resultatet frÄn utrötningsförsöken visade att metanpotentialen för de olika rejektfraktionerna var hög och kan jÀmföras med vad som kan förvÀntas av kÀllsorterat matavfall. Om rejektet som producerades under 2010 skulle anvÀndas för biogasproduktion skulle denna metanpotential motsvara 10 % av den totala biogasproduktionen vid KungsÀngens gÄrd under 2010. Utredningen visar att det bÀsta alternativet för att röta rejektet i sitt befintliga skick Àr satsvis torrötning. OsÀkerheten kring torrötning Àr dock stor pÄ grund av att det i Sverige inte finns nÄgra torrötningsanlÀggningar och dÀrmed Àr kunskapsnivÄn relativt lÄg.The biogas production in Sweden in 2009 was 1,4 TWh and 22 % of the biogas was produced in co-digestion plants. Since 2005 it is prohibited to deposit organic waste and this has resulted in an increased biogas production from this type of waste materials in recent years. The total biogas potential in Sweden is approximately 15 TWh and 70 % of that comes from agriculture wastes. Sewage sludge, waste from food industry and food waste accounts for the rest. It is also these three commodity groups that have the greatest profitability with today's technology. Among these groups, food waste have the largest remaining biogas potential. The problem with food waste is that it often contains impurities that must be sorted out in order to avoid operational problems. The out sorting process often causes problems and typically organic material is lost in the reject fraction. The biogas plant KungsÀngens gÄrd is a co-digestion plant that produces biogas from different types of organic residues. In 2009 about 7 536 tons of material were treated, of which 58 % was food waste. Of the incoming material 938 tons were sorted out as reject. In 2011 the amount of incoming material is expected to increase. In addition, the proportion of food waste is expected to increase to 90 %, which will result in even larger amounts of reject. The purpose of this study was to perform analysis and batch digestion experiments to determine the chemical composition and methane potential of the reject from the biogas plant KungsÀngens gÄrd. An investigation was also made to examine methods and technologies that potentially could be used to produce biogas from the reject. The results from the batch digestion experiments showed that the methane potential of the different reject fractions was high and it can be compared with what might be expected of source separated food waste. If the reject that was produced in 2010 would be used for biogas production, this methane potential is equal to 10 % of the total production of biogas at KungsÀngens gÄrd in 2010. The investigation shows that dry fermentation with a batch system is the only technology that potentially could produce biogas from the reject in its existing form. There are no dry fermentation plants in Sweden and therefore the level of knowledge is relatively low. Because of that it is hard to estimate the profitability and efficiency of dry fermentation plants

    Biogas potential of the reject fraction from the biogas plant KungsÀngens gÄrd

    No full text
    Den totala biogasproduktionen i Sverige 2009 var 1,4 TWh och 22 % av biogasen producerades i samrötningsanlÀggningar. Sedan 2005 Àr det förbjudet att deponera organiskt avfall, vilket har gjort att produktionen frÄn samrötningsanlÀggningar har ökat de senaste Ären. Den totala biogaspotentialen i Sverige Àr ungefÀr 15 TWh och dÀr stÄr lantbruket för över 70 %. Avloppsslam, avfall frÄn livsmedelsindustrin och matavfall stÄr för den resterande delen. Det Àr Àven dessa tre rÄvarugrupper som har störst lönsamhet med dagens teknik. Av dessa rÄvarugrupper finns den största kvarvarande potentialen hos matavfall. Problemet med matavfall Àr att det ofta innehÄller föroreningar som mÄste sorteras bort för att inte orsaka driftstörningar. Detta orsakar ofta problem pÄ grund av att organiskt material hamnar i rejektet.    KungsÀngens gÄrd Àr en samrötningsanlÀggning som producerar biogas frÄn olika typer av organiska restprodukter. Under 2009 behandlades 7 536 ton material, av detta var 58 % matavfall. Av inkommande material sorterades 938 ton ut och lÀmnade anlÀggningen som rejekt. Under 2011 förvÀntas mÀngden inkommande material öka. Dessutom förvÀntas andelen matavfall öka till 90 % vilket kommer att ge Ànnu större rejektmÀngder. Syftet med detta examensarbete var att genom analyser och satsvisa utrötningsförsök bestÀmma den kemiska sammansÀttningen samt metanpotentialen hos de olika rejektfraktionerna frÄn biogasanlÀggningen KungsÀngens gÄrd. En utredning gjordes för att undersöka vilka möjligheter och tekniker som potentiellt skulle kunna anvÀndas för att framstÀlla biogas av rejektet och ocksÄ vilka möjligheter som finns för att effektivisera befintlig utrustning. Resultatet frÄn utrötningsförsöken visade att metanpotentialen för de olika rejektfraktionerna var hög och kan jÀmföras med vad som kan förvÀntas av kÀllsorterat matavfall. Om rejektet som producerades under 2010 skulle anvÀndas för biogasproduktion skulle denna metanpotential motsvara 10 % av den totala biogasproduktionen vid KungsÀngens gÄrd under 2010. Utredningen visar att det bÀsta alternativet för att röta rejektet i sitt befintliga skick Àr satsvis torrötning. OsÀkerheten kring torrötning Àr dock stor pÄ grund av att det i Sverige inte finns nÄgra torrötningsanlÀggningar och dÀrmed Àr kunskapsnivÄn relativt lÄg.The biogas production in Sweden in 2009 was 1,4 TWh and 22 % of the biogas was produced in co-digestion plants. Since 2005 it is prohibited to deposit organic waste and this has resulted in an increased biogas production from this type of waste materials in recent years. The total biogas potential in Sweden is approximately 15 TWh and 70 % of that comes from agriculture wastes. Sewage sludge, waste from food industry and food waste accounts for the rest. It is also these three commodity groups that have the greatest profitability with today's technology. Among these groups, food waste have the largest remaining biogas potential. The problem with food waste is that it often contains impurities that must be sorted out in order to avoid operational problems. The out sorting process often causes problems and typically organic material is lost in the reject fraction. The biogas plant KungsÀngens gÄrd is a co-digestion plant that produces biogas from different types of organic residues. In 2009 about 7 536 tons of material were treated, of which 58 % was food waste. Of the incoming material 938 tons were sorted out as reject. In 2011 the amount of incoming material is expected to increase. In addition, the proportion of food waste is expected to increase to 90 %, which will result in even larger amounts of reject. The purpose of this study was to perform analysis and batch digestion experiments to determine the chemical composition and methane potential of the reject from the biogas plant KungsÀngens gÄrd. An investigation was also made to examine methods and technologies that potentially could be used to produce biogas from the reject. The results from the batch digestion experiments showed that the methane potential of the different reject fractions was high and it can be compared with what might be expected of source separated food waste. If the reject that was produced in 2010 would be used for biogas production, this methane potential is equal to 10 % of the total production of biogas at KungsÀngens gÄrd in 2010. The investigation shows that dry fermentation with a batch system is the only technology that potentially could produce biogas from the reject in its existing form. There are no dry fermentation plants in Sweden and therefore the level of knowledge is relatively low. Because of that it is hard to estimate the profitability and efficiency of dry fermentation plants

    Thermo-economic analysis of a thermophilic biogas plant integrated with membrane distillation

    Get PDF
    This study assessed the thermo-economic performance of membrane distillation (MD) for concentrating nutrients and recover process water from digestate at a thermophilic biogas plant. The input data were derived from mapping the Uppsala Vatten och Avfall biogas system, present knowledge on anaerobic digestion process management and technologies for biogas system operating conditions in Sweden. The study evaluated the potential for recovering waste heat from the digestate effluent and boiler flue gas for use in the MD system. The thermal energy requirement, size, and separation efficiency of the MD unit were based on a previous laboratory study. The study assessed the overall energy efficiency and costs estimation of a full-scale codigestion plant with thermally integrated MD. Presented results shows that the proposed model of integrated MD system has the best thermal performance. The recovered waste heat contributed total thermal energy demand of MD and additionally it could save 19% boiler energy by heating incoming slurry. The results showed that the MD product water permeate was 3.5 L/(m2 h) at 65°C digestate inlet temperature. Specific heat demand for MD was 100 kWh/m3 with internal heat recovery. Cost estimation showed that the unit cost of MD permeate water was 3.6 €/m3 at a digestate feed temperature of 65°C. The economic assessment indicated that thermal integration of a biogas plant with MD could be economically feasible. However, long-term continuous studies are needed to determine impact of fouling and membrane lifetime

    Aesthetically pleasing PV modules for the Built Environment

    No full text
    Sustainable development of the built environment is in the vicinity with circular economy, green building technology and the integration of renewable energy harvesting devices. Solar energy is an enormous resource, in 90 minutes the sun irradiates energy in an amount that is equal to our entire planet’s annual energy need. PV modules is an increasing alternative to generate electricity which has reached grid parity with fossil energy in larger installations. However, fields of PV modules require space and in the built environment the space is scarce, therefore, building applied and building integrated PV has become increasingly interesting. As PV becomes an integrated part in the built environment the aesthetics becomes important, also for it to become accepted among architects. Today, there are many alternatives to make PV modules aesthetically pleasing and many companies develop this further in collaboration with building contractors and architects. In the current report we introduce color, light and PV modules and present a survey of how to make PV modules aesthetically pleasing with a special focus on modification of its color. We present some examples of aesthetically pleasing PV modules and Nordic companies that have been working with developing this. We also list companies that supply roof- as well as façade systems. Finally, we discuss the challenges and the cost implications for aesthetically pleasing PV modules in the built environment.Competitive Industrialized Photovoltaic Roofin

    Coevolutionary Governance of Antibiotic and Pesticide Resistance

    No full text
    Development of new biocides has dominated human responses to evolution of antibiotic and pesticide resistance. Increasing and uniform biocide use, the spread of resistance genes, and the lack of new classes of compounds indicate the importance of navigating toward more sustainable coevolutionary dynamics between human culture and species that evolve resistance. To inform this challenge, we introduce the concept of coevolutionary governance and propose three priorities for its implementation: (i) new norms and mental models for lowering use, (ii) diversifying practices to reduce directional selection, and (iii) investment in collective action institutions to govern connectivity. We highlight the availability of solutions that facilitate broader sustainable development, which for antibiotic resistance include improved sanitation and hygiene, strong health systems, and decreased meat consumption
    corecore