6 research outputs found

    Estimating the Pool of Mobile Phosphorus in Offshore Soft Sediments of the Baltic Proper

    No full text
    Background Eutrophication is a major threat to many coastal ecosystems worldwide. This paper deals with the sediment-water exchange of phosphorus, one of the elements that may stimulate primary production in the aquatic environment. The lack of phosphorus-binding capacity in sediments at low redox-potential is recognized as an important mechanism for eutrophication-related effects in some areas. Methods Twelve sediment cores were collected in the Baltic Proper between 61 m and 175 m water depth and a number of phosphorus fractions were analyzed. Integrating the concentrations over the depth profiles, the amounts of mobile phosphorus were estimated in each core. Results It was found that sediments below the redox cline in the Baltic Proper contained small amounts of mobile phosphorus. The total amount of mobile phosphorus in the entire Baltic Proper sediments below 65 m water depth was estimated to between 55,000 tonnes and 156,000 tonnes or between less than 10% to around 25% of the phosphate in the system (water plus sediments). This represents the maximum amount of phosphorus that could possibly be released to the water column from these areas. We argue that the most reasonable estimate of the pool of mobile phosphorus in the sediments is the lower number. Conclusion The amounts of mobile phosphorus in sediment cores with oxidized surface layers were higher compared with sediment cores with reduced surfaces, indicating that there is a potential phosphorus-binding capacity in sediments below the redox cline if oxic conditions improved. Oxygenation of the Baltic Proper bottom water between 65 m and 100 m could probably remove around 100,000 tonnes of phosphorus from the water column and reduce phosphorus concentrations in the deep water by on average 30 mg/m 3 , which would possibly be felt also in the surface water

    Ten new insights in climate science 2020- A horizon scan

    Get PDF
    Non-technical summary We summarize some of the past year's most important findings within climate change-related research. New research has improved our understanding of Earth's sensitivity to carbon dioxide, finds that permafrost thaw could release more carbon emissions than expected and that the uptake of carbon in tropical ecosystems is weakening. Adverse impacts on human society include increasing water shortages and impacts on mental health. Options for solutions emerge from rethinking economic models, rights-based litigation, strengthened governance systems and a new social contract. The disruption caused by COVID-19 could be seized as an opportunity for positive change, directing economic stimulus towards sustainable investments. Technical summary A synthesis is made of ten fields within climate science where there have been significant advances since mid-2019, through an expert elicitation process with broad disciplinary scope. Findings include: (1) a better understanding of equilibrium climate sensitivity; (2) abrupt thaw as an accelerator of carbon release from permafrost; (3) changes to global and regional land carbon sinks; (4) impacts of climate change on water crises, including equity perspectives; (5) adverse effects on mental health from climate change; (6) immediate effects on climate of the COVID-19 pandemic and requirements for recovery packages to deliver on the Paris Agreement; (7) suggested long-term changes to governance and a social contract to address climate change, learning from the current pandemic, (8) updated positive cost–benefit ratio and new perspectives on the potential for green growth in the short- and long-term perspective; (9) urban electrification as a strategy to move towards low-carbon energy systems and (10) rights-based litigation as an increasingly important method to address climate change, with recent clarifications on the legal standing and representation of future generations. Social media summary Stronger permafrost thaw, COVID-19 effects and growing mental health impacts among highlights of latest climate science
    corecore