121 research outputs found

    Group I metabotropic glutamate receptors mediate a dual role of glutamate in T cell activation

    Get PDF
    Metabotropic glutamate receptors (mGluR) are present in cells of the nervous system, where they are activated by one of the main neurotransmitters, glutamate. They are also expressed in cells outside the nervous system. We identified and characterized two receptors belonging to group I mGluR, mGlu1R and mGlu5R, in human cell lines of lymphoid origin and in resting and activated lymphocytes from human peripheral blood. Both are highly expressed in the human Jurkat T cell line, whereas mGlu5R is expressed only in the human B cell line SKW6.4. In blood lymphocytes, mGlu5R is expressed constitutively, whereas mGlu1R is expressed only upon activation via the T cell receptor-CD3 complex. Group I receptors in the central nervous system are coupled to phospholipase C, whereas in blood lymphocytes, activation of mGlu5R does not trigger this signaling pathway, but instead activates adenylate cyclase. On the other hand, mGlu5R does not mediate ERK1/2 activation, whereas mGlu1R, which is coupled neither to phospholipase C nor to calcium channels and whose activation does not increase cAMP, activates the mitogen-activated protein kinase cascade. The differential expression of mGluR in resting and activated lymphocytes and the different signaling pathways that are triggered when mGlu1Rs or mGlu5Rs are activated point to a key role of glutamate in the regulation of T cell physiological function. The study of the signaling pathways (cAMP production and ERK1/2 phosphorylation) and the proliferative response obtained in the presence of glutamate analogs suggests that mGlu1R and mGlu5R have distinct functions. mGlu5R mediates the reported inhibition of cell proliferation evoked by glutamate, which is reverted by the activation of inducible mGlu1R. This is a novel non-inhibitory action mechanism for glutamate in lymphocyte activation. mGlu1R and mGlu5R thus mediate opposite glutamate effects in human lymphocytes

    Detection of Heteromers Formed by Cannabinoid CB 1

    Get PDF
    Functional interactions in signaling occur between dopamine D2 (D2R) and cannabinoid CB1 (CB1R) receptors, between CB1R and adenosine A2A (A2AR) receptors, and between D2R and A2AR. Furthermore, direct molecular interactions have been reported for the pairs CB1R-D2R, A2AR-D2R, and CB1R-A2AR. Here a combination of bimolecular fluorescence complementation and bioluminescence energy transfer techniques was used to identify the occurrence of D2R-CB1R-A2AR hetero-oligomers in living cells

    Orexin-Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine

    Get PDF
    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R–OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R–OX1R heteromer. Cocaine binding to the σ1R–CRF1R–OX1R complex promotes a long-term disruption of the orexin-A–CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking

    Useful pharmacological parameters for G-protein-coupled receptor homodimers obtained from competition experiments. Agonist-antagonist binding modulation

    Get PDF
    Many G-protein-coupled receptors (GPCRs) are expressed on the plasma membrane as dimers. Since drug binding data are currently fitted using equations developed for monomeric receptors, the interpretation of the pharmacological data are equivocal in many cases. As reported here, GPCR dimer models account for changes in competition curve shape as a function of the radioligand concentration used, something that cannot be explained by monomeric receptor models. Macroscopic equilibrium dissociation constants for the agonist and homotropic cooperativity index reflecting the intramolecular communication within the dopamine D1 or adenosine A2A receptor homodimer as well as hybrid equilibrium dissociation constant, which reflects the antagonist/agonist modulation may be calculated by fitting binding data from antagonist/agonist competition experiments to equations developed from dimer receptor models. Comparing fitting the data by assuming a classical monomeric receptor model or a dimer model, it is shown that dimer receptor models provide more clues useful in drug discovery than monomer-based models

    Functional μ-opioid-galanin receptor heteromers in the ventral tegmental area

    Get PDF
    The neuropeptide galanin has been shown to interact with the opioid system. More specifically, galanin counteracts the behavioral effects of the systemic administration of μ-opioid receptor (MOR) agonists. Yet the mechanism responsible for this galanin-opioid interaction has remained elusive. Using biophysical techniques in mammalian transfected cells, we found evidence for selective heteromerization of MOR and the galanin receptor subtype Gal1 (Gal1R). Also in transfected cells, a synthetic peptide selectively disrupted MOR-Gal1R heteromerization as well as specific interactions between MOR and Gal1R ligands: a negative cross talk, by which galanin counteracted MAPK activation induced by the endogenous MOR agonist endomorphin-1, and a cross-antagonism, by which a MOR antagonist counteracted MAPK activation induced by galanin. These specific interactions, which represented biochemical properties of the MOR-Gal1R heteromer, could then be identified in situ in slices of rat ventral tegmental area (VTA) with MAPK activation and two additional cell signaling pathways, AKT and CREB phosphorylation. Furthermore, in vivo microdialysis experiments showed that the disruptive peptide selectively counteracted the ability of galanin to block the dendritic dopamine release in the rat VTA induced by local infusion of endomorphin-1, demonstrating a key role of MOR-Gal1R heteromers localized in the VTA in the direct control of dopamine cell function and their ability to mediate antagonistic interactions between MOR and Gal1R ligands. The results also indicate that MOR-Gal1R heteromers should be viewed as targets for the treatment of opioid use disorders

    Differential effect of amphetamine over the corticotropin-releasing factor CRF2 receptor, the orexin OX1 receptor and the CRF2-OX1 heteroreceptor complex

    Get PDF
    Stress is one of the factors underlying drug seeking behavior that often goes in parallel with loss of appetite. We here demonstrate that orexin 1 receptors (OX1R) may form complexes with the corticotropin releasing factor CRF2 receptor. Two specific features of the heteromer were a cross-antagonism and a blockade by CRF2 of OX1R signaling. In cells expressing one of the receptors, agonist-mediated signal transduction mechanisms were potentiated by amphetamine. Sigma 1 (σ1) and 2 (σ2) receptors are targets of drugs of abuse and, despite sharing a similar name, the two receptors are structurally unrelated and their physiological role is not known. We here show that σ1 receptors interact with CRF2 receptors and that σ2 receptors interact with OX1R. Moreover, we show that amphetamine effect on CRF2 receptors was mediated by σ1R whereas the effect on OX1 receptors was mediated by σ2R. Amphetamine did potentiate the negative cross-talk occurring within the CRF2-OX1 receptor heteromer context, likely by a macromolecular complex involving the two sigma receptors and the two GPCRs. Finally, in vivo microdialysis experiments showed that amphetamine potentiated orexin A-induced dopamine and glutamate release in the ventral tegmental area (VTA). Remarkably, the in vivo orexin A effects were blocked by a selective CRF2R antagonist. These results show that amphetamine impacts on the OX1R-, CRF2R- and OX1R/CRF2R-mediated signaling and that cross-antagonism is instrumental for in vivo detection of GPCR heteromers

    Adenosine deaminase and A1 adenosine receptors internalize together following agonist-induced receptor desensitization

    Get PDF
    A1 adenosine receptors (A1Rs) and adenosine deaminase (ADA; EC 3.5.4.4) interact on the cell surface of DDT1MF-2 smooth muscle cells. The interaction facilitates ligand binding and signaling via A1R, but it is not known whether it has a role in homologous desensitization of A1Rs. Here we show that chronic exposure of DDT1MF-2 cells to the A1R agonist,N 6-(R)-(phenylisopropyl)adenosine (R-PIA), caused a rapid aggregation or clustering of A1 receptor molecules on the cell membrane, which was enhanced by pretreatment with ADA. Colocalization between A1R and ADA occurred in the R-PIA-induced clusters. Interestingly, colocalization between A1R and ADA also occurred in intracellular vesicles after internalization of both protein molecules in response to R-PIA. Agonist-induced aggregation of A1Rs was mediated by phosphorylation of A1Rs, which was enhanced and accelerated in the presence of ADA. Ligand-induced second-messenger desensitization of A1Rs was also accelerated in the presence of exogenous ADA, and it correlated well with receptor phosphorylation. However, although phosphorylation of A1R returned to its basal state within minutes, desensitization continued for hours. The loss of cell-surface binding sites (sequestration) induced by the agonist was time-dependent (t½= 10 ± 1 h) and was accelerated by ADA. All of these results strongly suggest that ADA plays a key role in the regulation of A1Rs by accelerating ligand-induced desensitization and internalization and provide evidence that the two cell surface proteins internalize via the same endocytic pathway

    Functional Selectivity of Allosteric Interactions within GPCR oligomers: the Dopamine D1-D3 Receptor Heterotetramer

    Get PDF
    The dopamine D1 receptor-D3 receptor (D1R-D3R) heteromer is being considered as a potential therapeutic target for neuropsychiatric disorders. Previous studies suggested that this heteromer could be involved in the ability of D3R agonists to potentiate locomotor activation induced by D1R agonists. It has also been postulated that its overexpression plays a role in L-dopa-induced dyskinesia and in drug addiction. However, little is known about its biochemical properties. By combining bioluminescence resonance energy transfer, bimolecular complementation techniques and cell signaling experiments in transfected cells, evidence was obtained for a tetrameric stoichiometry of the D1R-D3R heteromer, constituted by two interacting D1R and D3R homodimers coupled to Gs and GI proteins, respectively. Co-activation of both receptors led to the canonical negative interaction at the level of adenylyl cyclase signaling, to a strong recruitment of β-arrestin-1 and to a positive crosstalk of D1R and D3R agonists at the level of mitogen-activated protein kinase (MAPK) signaling. Furthermore, D1R or D3R antagonists counteracted β-arrestin-1 recruitment and MAPK activation induced by D3R and D1R agonists, respectively (cross-antagonism). Positive crosstalk and cross-antagonism at the MAPK level were counteracted by specific synthetic peptides with amino acid sequences corresponding to D1R transmembrane (TM) domains TM5 and TM6, which also selectively modified the quaternary structure of the D1R-D3R heteromer, as demonstrated by complementation of hemiproteins of YFP fused to D1R and D3R. These results demonstrate functional selectivity of allosteric modulations within the D1R-D3R heteromer, which can be involved with the reported behavioral synergism of D1R and D3R agonists

    Cross-communication between Gi and Gs in a G-protein-coupled receptor heterotetramer guided by a receptor C-terminal domain

    Get PDF
    BACKGROUND: G-protein-coupled receptor (GPCR) heteromeric complexes have distinct properties from homomeric GPCRs, giving rise to new receptor functionalities. Adenosine receptors (A1R or A2AR) can form A1R-A2AR heteromers (A1-A2AHet), and their activation leads to canonical G-protein-dependent (adenylate cyclase mediated) and -independent (β-arrestin mediated) signaling. Adenosine has different affinities for A1R and A2AR, allowing the heteromeric receptor to detect its concentration by integrating the downstream Gi- and Gs-dependent signals. cAMP accumulation and β-arrestin recruitment assays have shown that, within the complex, activation of A2AR impedes signaling via A1R. RESULTS: We examined the mechanism by which A1-A2AHet integrates Gi- and Gs-dependent signals. A1R blockade by A2AR in the A1-A2AHet is not observed in the absence of A2AR activation by agonists, in the absence of the C-terminal domain of A2AR, or in the presence of synthetic peptides that disrupt the heteromer interface of A1-A2AHet, indicating that signaling mediated by A1R and A2AR is controlled by both Gi and Gs proteins. CONCLUSIONS: We identified a new mechanism of signal transduction that implies a cross-communication between Gi and Gs proteins guided by the C-terminal tail of the A2AR. This mechanism provides the molecular basis for the operation of the A1-A2AHet as an adenosine concentration-sensing device that modulates the signals originating at both A1R and A2AR

    Allosteric interactions between agonists and antagonists within the adenosine A2A receptor-dopamine D2 receptor heterotetramer

    Full text link
    Adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromers are key modulators of striatal neuronal function. It has been suggested that the psychostimulant effects of caffeine depend on its ability to block an allosteric modulation within the A2AR-D2R heteromer, by which adenosine decreases the affinity and intrinsic efficacy of dopamine at the D2R. We describe novel unsuspected allosteric mechanisms within the heteromer by which not only A2AR agonists, but also A2AR antagonists, decrease the affinity and intrinsic efficacy of D2R agonists and the affinity of D2R antagonists. Strikingly, these allosteric modulations disappear on agonist and antagonist coadministration. This can be explained by a model that considers A2AR-D2R heteromers as heterotetramers, constituted by A2AR and D2R homodimers, as demonstrated by experiments with bioluminescence resonance energy transfer and bimolecular fluorescence and bioluminescence complementation. As predicted by the model, high concentrations of A2AR antagonists behaved as A2AR agonists and decreased D2R function in the brain
    • …
    corecore