9 research outputs found

    Taking into account nucleosomes for predicting gene expression

    Get PDF
    The eukaryotic genome is organized in a chain of nucleosomes that consist of 145-147. bp of DNA wrapped around a histone octamer protein core. Binding of transcription factors (TF) to nucleosomal DNA is frequently impeded, which makes it a challenging task to calculate TF occupancy at a given regulatory genomic site for predicting gene expression. Here, we review methods to calculate TF binding to DNA in the presence of nucleosomes. The main theoretical problems are (i) the computation speed that is becoming a bottleneck when partial unwrapping of DNA from the nucleosome is considered, (ii) the perturbation of the binding equilibrium by the activity of ATP-dependent chromatin remodelers, which translocate nucleosomes along the DNA, and (iii) the model parameterization from high-throughput sequencing data and fluorescence microscopy experiments in living cells. We discuss strategies that address these issues to efficiently compute transcription factor binding in chromatin. © 2013 Elsevier Inc

    Heterochromatin Protein 1β (HP1β) has distinct functions and distinct nuclear distribution in pluripotent versus differentiated cells

    Get PDF
    Background: Pluripotent embryonic stem cells (ESCs) have the unique ability to differentiate into every cell type and to self-renew. These characteristics correlate with a distinct nuclear architecture, epigenetic signatures enriched for active chromatin marks and hyperdynamic binding of structural chromatin proteins. Recently, several chromatin-related proteins have been shown to regulate ESC pluripotency and/or differentiation, yet the role of the major heterochromatin proteins in pluripotency is unknown. Results: Here we identify Heterochromatin Protein 1β (HP1β) as an essential protein for proper differentiation, and, unexpectedly, for the maintenance of pluripotency in ESCs. In pluripotent and differentiated cells HP1β is differentially localized and differentially associated with chromatin. Deletion of HP1β, but not HP1aα, in ESCs provokes a loss of the morphological and proliferative characteristics of embryonic pluripotent cells, reduces expression of pluripotency factors and causes aberrant differentiation. However, in differentiated cells, loss of HP1β has the opposite effect, perturbing maintenance of the differentiation state and facilitating reprogramming to an induced pluripotent state. Microscopy, biochemical fractionation and chromatin immunoprecipitation reveal a diffuse nucleoplasmic distribution, weak association with chromatin and high expression levels for HP1β in ESCs. The minor fraction of HP1β that is chromatin-bound in ESCs is enriched within exons, unlike the situation in differentiated cells, where it binds heterochromatic satellite repeats and chromocenters. Conclusions: We demonstrate an unexpected duality in the role of HP1β: it is essential in ESCs for maintaining pluripotency, while it is required for proper differentiation in differentiated cells. Thus, HP1β function both depends on, and regulates, the pluripotent state

    Comparative transcriptome profiling of amyloid precursor protein family members in the adult cortex

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The β-amyloid precursor protein (APP) and the related β-amyloid precursor-like proteins (APLPs) undergo complex proteolytic processing giving rise to several fragments. Whereas it is well established that Aβ accumulation is a central trigger for Alzheimer's disease, the physiological role of APP family members and their diverse proteolytic products is still largely unknown. The secreted APPsα ectodomain has been shown to be involved in neuroprotection and synaptic plasticity. The γ-secretase-generated APP intracellular domain (AICD) functions as a transcriptional regulator in heterologous reporter assays although its role for endogenous gene regulation has remained controversial.</p> <p>Results</p> <p>To gain further insight into the molecular changes associated with knockout phenotypes and to elucidate the physiological functions of APP family members including their proposed role as transcriptional regulators, we performed DNA microarray transcriptome profiling of prefrontal cortex of adult wild-type (WT), APP knockout (APP<sup>-/-</sup>), APLP2 knockout (APLP2<sup>-/-</sup>) and APPsα knockin mice (APP<sup>α/α</sup>) expressing solely the secreted APPsα ectodomain. Biological pathways affected by the lack of APP family members included neurogenesis, transcription, and kinase activity. Comparative analysis of transcriptome changes between mutant and wild-type mice, followed by qPCR validation, identified co-regulated gene sets. Interestingly, these included heat shock proteins and plasticity-related genes that were both down-regulated in knockout cortices. In contrast, we failed to detect significant differences in expression of previously proposed AICD target genes including <it>Bace1</it>, <it>Kai1</it>, <it>Gsk3b</it>, <it>p53</it>, <it>Tip60</it>, and <it>Vglut2</it>. Only <it>Egfr </it>was slightly up-regulated in APLP2<sup>-/- </sup>mice. Comparison of APP<sup>-/- </sup>and APP<sup>α/α </sup>with wild-type mice revealed a high proportion of co-regulated genes indicating an important role of the C-terminus for cellular signaling. Finally, comparison of APLP2<sup>-/- </sup>on different genetic backgrounds revealed that background-related transcriptome changes may dominate over changes due to the knockout of a single gene.</p> <p>Conclusion</p> <p>Shared transcriptome profiles corroborated closely related physiological functions of APP family members in the adult central nervous system. As expression of proposed AICD target genes was not altered in adult cortex, this may indicate that these genes are not affected by lack of APP under resting conditions or only in a small subset of cells.</p
    corecore