115 research outputs found

    Social Isolation Stress Induces Anxious-Depressive-Like Behavior and Alterations of Neuroplasticity-Related Genes in Adult Male Mice

    Get PDF
    Stress is a major risk factor in the onset of several neuropsychiatric disorders including anxiety and depression. Although several studies have shown that social isolation stress during postweaning period induces behavioral and brain molecular changes, the effects of social isolation on behavior during adulthood have been less characterized. Aim of this work was to investigate the relationship between the behavioral alterations and brain molecular changes induced by chronic social isolation stress in adult male mice. Plasma corticosterone levels and adrenal glands weight were also analyzed. Socially isolated (SI) mice showed higher locomotor activity, spent less time in the open field center, and displayed higher immobility time in the tail suspension test compared to group-housed (GH) mice. SI mice exhibited reduced plasma corticosterone levels and reduced difference between right and left adrenal glands. SI showed lower mRNA levels of the BDNF-7 splice variant, c-Fos, Arc, and Egr-1 in both hippocampus and prefrontal cortex compared to GH mice. Finally, SI mice exhibited selectively reduced mGluR1 and mGluR2 levels in the prefrontal cortex. Altogether, these results suggest that anxious- and depressive-like behavior induced by social isolation stress correlates with reduction of several neuroplasticity-related genes in the hippocampus and prefrontal cortex of adult male mice

    Synaptoproteomic analysis of a rat gene-environment model of depression reveals involvement of energy metabolism and cellular remodeling pathways

    Get PDF
    Major depression is a severe mental illness that causes heavy social and economic burden worldwide. A number of studies have shown that interaction between individual genetic vulnerability and environmental risk factors, such as stress, is crucial in psychiatric pathophysiology. In particular, the experience of stressful events in childhood, such as neglect, abuse or parent loss, was found to increase the risk for development of depression in adult life. Here, to reproduce the gene x environment interaction, we employed an animal model that combines genetic vulnerability with early-life stress

    Remodelling by early-life stress of NMDA receptor-dependent synaptic plasticity in a gene-environment rat model of depression.

    Get PDF
    An animal model of depression combining genetic vulnerability and early-life stress (ELS) was prepared by submitting the Flinders Sensitive Line (FSL) rats to a standard paradigm of maternal separation. We analysed hippocampal synaptic transmission and plasticity in vivo and ionotropic receptors for glutamate in FSL rats, in their controls Flinders Resistant Line (FRL) rats, and in both lines subjected to ELS. A strong inhibition of long-term potentiation (LTP) and lower synaptic expression of NR1 subunit of the NMDA receptor were found in FSL rats. Remarkably, ELS induced a remodelling of synaptic plasticity only in FSL rats, reducing inhibition of LTP; this was accompanied by marked increase of synaptic NR1 subunit and GluR2/3 subunits of AMPA receptors. Chronic treatment with escitalopram inhibited LTP in FRL rats, but this effect was attenuated by prior ELS. The present results suggest that early gene-environment interactions cause lifelong synaptic changes affecting functional and molecular aspects of plasticity, partly reversed by antidepressant treatments

    Chronic treatment with agomelatine or venlafaxine reduces depolarization-evoked glutamate release from hippocampal synaptosomes

    Get PDF
    Background: Growing compelling evidence from clinical and preclinical studies has demonstrated the primary role of alterations of glutamatergic transmission in cortical and limbic areas in the pathophysiology of mood disorders. Chronic antidepressants have been shown to dampen endogenous glutamate release from rat hippocampal synaptic terminals and to prevent the marked increase of glutamate overflow induced by acute behavioral stress in frontal/prefrontal cortex. Agomelatine, a new antidepressant endowed with MT1/MT2 agonist and 5-HT2C serotonergic antagonist properties, has shown efficacy at both preclinical and clinical levels. Results: Chronic treatment with agomelatine, or with the reference drug venlafaxine, induced a marked decrease of depolarization-evoked endogenous glutamate release from purified hippocampal synaptic terminals in superfusion. No changes were observed in GABA release. This effect was accompanied by reduced accumulation of SNARE protein complexes, the key molecular effector of vesicle docking, priming and fusion at presynaptic membranes. Conclusions: Our data suggest that the novel antidepressant agomelatine share with other classes of antidepressants the ability to modulate glutamatergic transmission in hippocampus. Its action seems to be mediated by molecular mechanisms located on the presynaptic membrane and related with the size of the vesicle pool ready for release

    LSD1 modulates stress-evoked transcription of immediate early genes and emotional behavior

    Get PDF
    Behavioral changes in response to stressful stimuli can be controlled via adaptive epigenetic changes in neuronal gene expression. Here we indicate a role for the transcriptional corepressor Lysine-Specific Demethylase 1 (LSD1) and its dominant-negative splicing isoform neuroLSD1, in the modulation of emotional behavior. In mouse hippocampus, we show that LSD1 and neuroLSD1 can interact with transcription factor serum response factor (SRF) and set the chromatin state of SRF-targeted genes early growth response 1 (egr1) and c-fos. Deletion or reduction of neuroLSD1 in mutant mice translates into decreased levels of activating histone marks at egr1 and c-fos promoters, dampening their psychosocial stress-induced transcription and resulting in low anxiety-like behavior. Administration of suberoylanilide hydroxamine to neuroLSD1(KO) mice reactivates egr1 and c-fos transcription and restores the behavioral phenotype. These findings indicate that LSD1 is a molecular transducer of stressful stimuli as well as a stress-response modifier. Indeed, LSD1 expression itself is increased acutely at both the transcriptional and splicing levels by psychosocial stress, suggesting that LSD1 is involved in the adaptive response to stress

    Expression Profiling of a Genetic Animal Model of Depression Reveals Novel Molecular Pathways Underlying Depressive-Like Behaviours

    Get PDF
    The Flinders model is a validated genetic rat model of depression that exhibits a number of behavioural, neurochemical and pharmacological features consistent with those observed in human depression.In this study we have used genome-wide microarray expression profiling of the hippocampus and prefrontal/frontal cortex of Flinders Depression Sensitive (FSL) and control Flinders Depression Resistant (FRL) lines to understand molecular basis for the differences between the two lines. We profiled two independent cohorts of Flinders animals derived from the same colony six months apart, each cohort statistically powered to allow independent as well as combined analysis. Using this approach, we were able to validate using real-time-PCR a core set of gene expression differences that showed statistical significance in each of the temporally distinct cohorts, representing consistently maintained features of the model. Small but statistically significant increases were confirmed for cholinergic (chrm2, chrna7) and serotonergic receptors (Htr1a, Htr2a) in FSL rats consistent with known neurochemical changes in the model. Much larger gene changes were validated in a number of novel genes as exemplified by TMEM176A, which showed 35-fold enrichment in the cortex and 30-fold enrichment in hippocampus of FRL animals relative to FSL.These data provide significant insights into the molecular differences underlying the Flinders model, and have potential relevance to broader depression research

    Chronic social defeat stress differentially regulates the expression of BDNF transcripts and epigenetic modifying enzymes in susceptible and resilient mice

    No full text
    Objectives: Although stress is considered a primary risk factor for neuropsychiatric disorders, a majority of individuals are resilient to the effects of stress exposure and successfully adapt to adverse life events, while others, the so-called susceptible individuals, may have problems to properly adapt to environmental changes. However, the mechanisms underlying these different responses to stress exposure are poorly understood. Methods: Adult male C57BL/6J mice were exposed to chronic social defeat stress protocol and levels of brain derived neurotrophic factor (BDNF) transcripts and epigenetic modifying enzymes were analysed by real-time PCR in the hippocampus (HPC) and prefrontal cortex (PFC) of susceptible and resilient mice. Results: We found a selective reduction of BDNF-6 transcript in the HPC and an increase of BDNF-4 transcript in the PFC of susceptible mice. Moreover, susceptible mice showed a selective reduction of the g9a mRNA levels in the HPC, while HDAC-5 and DNMT3a mRNA levels were specifically reduced in the PFC. Conclusions: Overall, our results, showing a different expression of BDNF transcripts and epigenetic modifying enzymes in susceptible and resilient mice, suggest that stress resilience is not simply a lack of activation of stress-related pathways, but is related to the activation of additional different specific mechanisms

    The action of antidepressants on the glutamate system : regulation of glutamate release and glutamate receptors

    No full text
    Recent compelling evidence has suggested that the glutamate system is a primary mediator of psychiatric pathology and also a target for rapid-acting antidepressants. Clinical research in mood and anxiety disorders has shown alterations in levels, clearance, and metabolism of glutamate and consistent volumetric changes in brain areas where glutamate neurons predominate. In parallel, preclinical studies with rodent stress and depression models have found dendritic remodeling and synaptic spines reduction in corresponding areas, suggesting these as major factors in psychopathology. Enhancement of glutamate release/transmission, in turn induced by stress/glucocorticoids, seems crucial for structural/functional changes. Understanding mechanisms of maladaptive plasticity may allow identification of new targets for drugs and therapies. Interestingly, traditional monoaminergic-based antidepressants have been repeatedly shown to interfere with glutamate system function, starting with modulation of N-methyl-D-aspartate (NMDA) receptors. Subsequently, it has been shown that antidepressants reduce glutamate release and synaptic transmission; in particular, it was found antidepressants prevent the acute stress-induced enhancement of glutamate release. Additional studies have shown that antidepressants may partly reverse the maladaptive changes in synapses/circuitry in stress and depression models. Finally, a number of studies over the years have shown that these drugs regulate glutamate receptors, reducing the function of NMDA receptors, potentiating the function of \u3b1-amino-3-hydroxy-5- methyl-4-isoxazole-propionic acid receptors, and, more recently, exerting variable effects on different subtypes of metabotropic glutamate receptors. The development of NMDA receptor antagonists has opened new avenues for glutamatergic, rapid acting, antidepressants, while additional targets in the glutamate synapse await development of new compounds for better, faster antidepressant action

    Chronic antidepressant treatments increase basic fibroblast growth factor and fibroblast growth factor-binding protein in neurons

    No full text
    One of the mechanisms proposed for antidepressant drugs is the enhancement of synaptic connections and plasticity in the hippocampus and cerebral cortex. Fibroblast growth factor 2 (FGF2) is a growth factor essential for the proper formation of synaptic connections in the cerebral cortex, maturation and survival of catecholamine neurons, and neurogenesis. In this report, we attempted to establish a correlation between antidepressant treatments and FGF2 expression in the cerebral cortex and hippocampus, two brain areas relevant for depression. Desipramine (DMI, 10 mg/kg) or fluoxetine (FLU, 5 mg/kg) was injected acutely (single injection) or chronically (daily injection for two weeks) in adult rats. Chronic, but not acute, antidepressant treatments increase FGF2 immunoreactivity in neurons of the cerebral cortex and in both astrocytes and neurons of the hippocampus. FGF2 immunoreactivity in the cortex was increased mainly in the cytoplasm of neurons of layer V. Western blot analyses of nuclear and cytosolic extracts from the cortex revealed that both antidepressants increase FGF2 isoforms in the cytosolic extracts and decrease accumulation of FGF2 immunoreactivity in the nucleus. To characterize the anatomical and cellular specificity of antidepressants, we examined FGF-binding protein (FBP), a secreted protein that acts as an extracellular chaperone for FGF2 and enhances its activity. DMI and FLU increased FBP immunoreactivity in both cortical and hippocampal neurons. Our data suggest that FGF2 and FBP may participate in the plastic responses underlying the clinical efficacy of antidepressants
    • …
    corecore