55 research outputs found

    The Crystal Structure of Recombinant Human Neutrophil-activating Peptide-2 (M6L) at 1.9-Ă… Resolution

    Get PDF
    Neutrophil-activating peptide-2 (NAP-2) is a 70-residue carboxyl-terminal fragment of platelet basic protein, which is found in the a-granules of human platelets. NAP-2, which belongs to the CXC family of chemokines that includes Interleukin-B and platelet factor 4, binds to the interleukin-8 type II receptor and induces a rise in cytosolic calcium, chemotaxis of neutrophils, and exocytosis. Crystals of recombinant NAP-2 in which the single methionine at position 6 was replaced by leucine to facilitate expression belong to space group PI (unit cell parameters a = 40.8, b = 43.8, and c = 44.7 A and a = 98.4°, fl = 120.3°, and \u27Y = 92.8°), with 4 molecules of NAP-2 (Mr = 7600) in the asymmetric unit. The molecular replacement solution calculated with bovine platelet factor 4 as the starting model was refined using rigid body refinement, manual fitting in solvent-leveled electron density maps, simulated annealing, and restrained least squares to an R-factor of 0.188 for 2 fT data between 7.0- and 1.9-A resolution. The final refined crystal structure includes 265 solvent molecules. The overall tertiary structure, which is similar to that of platelet factor 4 and interleukin-8, includes an extended amino-terminal loop, three strands of antiparallel fl-sheet arranged in a Greek key fold, and one a-helix at the carboxyl terminus. The Ghr-Leu-Arg sequence that is critical for receptor binding is fully defined by electron density and exhibits multiple conformations

    Structure of a Bovine Thrombin-Hirudin\u3csub\u3e51-65\u3c/sub\u3e Complex Determined by a Combination of Molecular Replacement and Graphics. Incorporation of Known Structural Information in Molecular Replacement

    Get PDF
    Crystals of the bovine thrombin-hirudins51-65 complex have space group P6122 with cell constants a = 116.4, and c = 200.6 Ă… and two thrombin molecules in the asymmetric unit. Only one thrombin molecule could be located by generalized molecular replacement; the second was fit visually as a rigid body to an improved electron-density difference map. The structure was refined to R = 0.192 with two B values per residue (main chain and side chain) at 3.2 Ă…. The polar interactions of the peptides with the exosite of thrombin show differences consistent with the known flexibility in the interactions of the C-terminal peptide of hirudin with thrombin. The hirudin peptide in complex 2 has a higher temperature factor as compared with peptide 1 which may be correlated partly with a larger number of short-range electrostatic interactions between peptide 1 and thrombin and partly with the fact that thrombin 2 is -thrombin which is cleaved at Thr149A near the peptide binding site. Later, using this structure as a test case, it was shown that the position for the second thrombin could also be determined by a novel modification of the molecular-replacement method in which the contribution of the known molecule is subtracted from the structure factors. This approach is facile and applicable to any crystal containing two or more macromolecules in the asymmetric unit in which some but not all of the molecules can be determined by molecular replacement

    The Structure of a Complex of Bovine &-Thrombin and Recombinant Hirudin at 2.8-A Resolution

    Get PDF
    Crystals of the complex of bovine alpha-thrombin with recombinant hirudin variant 1 have space group C222(1) with cell constants a = 59.11, b = 102.62, and c = 143.26 A. The orientation and position of the thrombin component was determined by molecular replacement and the hirudin molecule was fit in 2 magnitude of Fo - magnitude of Fc electron density maps. The structure was refined by restrained least squares and simulated annealing to R = 0.161 at 2.8-A resolution. The binding of hirudin to thrombin is generally similar to that observed in the crystals of human thrombin-hirudin. Several differences in the interactions of the COOH-terminal polypeptide of hirudin, specifically of residues Asp-55h, Phe-56h, Glu-57h, and Glu-58h, and a few differences in the interactions of the hirudin core, specifically of residues Asp-5h, Ser-19h, and Asn-20h, with thrombin from human thrombin-hirudin suggest that there is some flexibility in the binding of these 2 molecules. Most of the residues in the 9 subsites that bind fibrinopeptide A7-16 to thrombin also interact with the NH2-terminal domain of hirudin. The S1 subsite is a notable exception in that only 1 of its 6 residues, namely Ser-214, interacts with hirudin. The only difference between human and bovine thrombins that appears to influence the binding of hirudin is the replacement of Lys-149E by an acidic glutamate in the bovine enzyme

    The Structure of a Complex of Bovine &-Thrombin and Recombinant Hirudin at 2.8-A Resolution

    Get PDF
    Crystals of the complex of bovine alpha-thrombin with recombinant hirudin variant 1 have space group C222(1) with cell constants a = 59.11, b = 102.62, and c = 143.26 A. The orientation and position of the thrombin component was determined by molecular replacement and the hirudin molecule was fit in 2 magnitude of Fo - magnitude of Fc electron density maps. The structure was refined by restrained least squares and simulated annealing to R = 0.161 at 2.8-A resolution. The binding of hirudin to thrombin is generally similar to that observed in the crystals of human thrombin-hirudin. Several differences in the interactions of the COOH-terminal polypeptide of hirudin, specifically of residues Asp-55h, Phe-56h, Glu-57h, and Glu-58h, and a few differences in the interactions of the hirudin core, specifically of residues Asp-5h, Ser-19h, and Asn-20h, with thrombin from human thrombin-hirudin suggest that there is some flexibility in the binding of these 2 molecules. Most of the residues in the 9 subsites that bind fibrinopeptide A7-16 to thrombin also interact with the NH2-terminal domain of hirudin. The S1 subsite is a notable exception in that only 1 of its 6 residues, namely Ser-214, interacts with hirudin. The only difference between human and bovine thrombins that appears to influence the binding of hirudin is the replacement of Lys-149E by an acidic glutamate in the bovine enzyme

    The Structure of a Complex of Bovine É‘-Thrombin and Recombinant Hirudin at 2.8-Ă… Resolution

    Get PDF
    Crystals of the complex of bovine alpha-thrombin with recombinant hirudin variant 1 have space group C222(1) with cell constants a = 59.11, b = 102.62, and c = 143.26 A. The orientation and position of the thrombin component was determined by molecular replacement and the hirudin molecule was fit in 2 magnitude of Fo - magnitude of Fc electron density maps. The structure was refined by restrained least squares and simulated annealing to R = 0.161 at 2.8-A resolution. The binding of hirudin to thrombin is generally similar to that observed in the crystals of human thrombin-hirudin. Several differences in the interactions of the COOH-terminal polypeptide of hirudin, specifically of residues Asp-55h, Phe-56h, Glu-57h, and Glu-58h, and a few differences in the interactions of the hirudin core, specifically of residues Asp-5h, Ser-19h, and Asn-20h, with thrombin from human thrombin-hirudin suggest that there is some flexibility in the binding of these 2 molecules. Most of the residues in the 9 subsites that bind fibrinopeptide A7-16 to thrombin also interact with the NH2-terminal domain of hirudin. The S1 subsite is a notable exception in that only 1 of its 6 residues, namely Ser-214, interacts with hirudin. The only difference between human and bovine thrombins that appears to influence the binding of hirudin is the replacement of Lys-149E by an acidic glutamate in the bovine enzyme

    Establishing a training set through the visual analysis of crystallization trials. Part II: crystal examples

    Get PDF
    As part of a training set for automated image analysis, crystallization screening experiments for 269 different macromolecules were visually analyzed and a set of crystal images extracted. Outcomes and trends are analyzed

    Coordinating the impact of structural genomics on the human α-helical transmembrane proteome

    Get PDF
    Given the recent successes in determining membrane-protein structures, we explore the tractability of determining representatives for the entire human membrane proteome. This proteome contains 2,925 unique integral α-helical transmembrane-domain sequences that cluster into 1,201 families sharing more than 25% sequence identity. Structures of 100 optimally selected targets would increase the fraction of modelable human α-helical transmembrane domains from 26% to 58%, providing structure and function information not otherwise available

    Identification of a homozygous recessive variant in PTGS1 resulting in a congenital aspirin-like defect in platelet function

    Get PDF
    We have identified a rare missense variant on chromosome 9, position 125145990 (GRCh37), in exon 8 in PTGS1 (the gene encoding cyclo-oxygenase 1, COX-1, the target of anti-thrombotic aspirin therapy). We report that in the homozygous state within a large consanguineous family this variant is associated with a bleeding phenotype and alterations in platelet reactivity and eicosanoid production. Western blotting and confocal imaging demonstrated that COX-1 was absent in the platelets of three family members homozygous for the PTGS1 variant but present in their leukocytes. Platelet reactivity, as assessed by aggregometry, lumi-aggregometry and flow cytometry, was impaired in homozygous family members, as were platelet adhesion and spreading. The productions of COX-derived eicosanoids by stimulated platelets were greatly reduced but there were no changes in the levels of urinary metabolites of COX-derived eicosanoids. The proband exhibited additional defects in platelet aggregation and spreading which may explain why her bleeding phenotype was slightly more severe than those of other homozygous affected relatives. This is the first demonstration in humans of the specific loss of platelet COX-1 activity and provides insight into its consequences for platelet function and eicosanoid metabolism. Notably despite the absence of thromboxane A2 (TXA2) formation by platelets, urinary TXA2 metabolites were in the normal range indicating these cannot be assumed as markers of in vivo platelet function. Results from this study are important benchmarks for the effects of aspirin upon platelet COX-1, platelet function and eicosanoid production as they define selective platelet COX-1 ablation within humans
    • …
    corecore