8 research outputs found

    Farm-based Production Parameters and Breakeven Costs for Yellow Perch Grow-out in Ponds in Southern Wisconsin

    Get PDF
    For over 30 years the yellow perch (Perca flavescens) has been viewed as a species with great potential for aquaculture in the North Central Region (NCR). The species has been the focus of a significant amount of research over this period, and has been a priority species for research sponsored by the North Central Regional Aquaculture Center (NCRAC) since its inception in 1988. Despite these efforts almost no information has been available on “real world” production parameters and costs of raising yellow perch to market size using different system types. The lack of such basic information on production costs is a primary reason for the failure of numerous yellow perch operations in the NCR

    Lack of growth enhancement by exogenous growth hormone treatment in yellow perch (Perca flavescens) in four separate experiments

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B. V. for personal use, not for redistribution. The definitive version was published in Aquaculture 250 (2005): 471-479, doi:10.1016/j.aquaculture.2005.03.019.The effect of exogenous growth hormone (GH) treatment on the growth of juvenile yellow perch (Perca flavescens) was investigated in four experiments. In the first two experiments, juvenile yellow perch were reared at either 13°C or 21°C, and injected weekly with bovine GH (bGH) at 0.1, 1.0 or 10.0 μg/g body weight for 84 days. No significant growth enhancement in GH-treated fish was measured in fish in either of the experiments. In the third experiment, juvenile yellow perch were treated with estradiol-17β (E2, 15 μg/g of diet), bGH (1.0 μg/g body weight) injected weekly or both hormones for 70 days at 21°C. E2 alone stimulated growth, but no further growth stimulation occurred in the E2 + bGH-treated fish. In addition, no growth enhancement was found in fish treated with bGH alone. We measured no difference in serum insulin-like growth factor-I (IGF-I) levels between the treatment groups at 12 and 24 h after the final injection of GH; however, a drop in IGF-I levels after 24 h was observed. In a fourth study, the effect of recombinant yellow perch GH (rypGH, 0.2 or 1.0 μg/g body weight) injected weekly was evaluated in yellow perch juveniles. The fish were reared for 42 days at 18°C. Neither GH dosages improved growth compared to control-injected and non-injected fish. Taken together, the lack of effect of mammalian GH or rypGH in our experiments suggests (1) low binding affinity between these hormones and the GH receptor in yellow perch, (2) that the endogenous GH levels were already at biologically maximal levels or (3) that other endocrine factors are needed in order for GH to promote yellow perch growth. The reduction in IGF-I levels 24 h after handling suggests a negative effect of handling stress on the GH-IGF-I axis in yellow perch.This work was supported by the University of Wisconsin-Madison College of Agricultural and Life Sciences and School of Natural Resources; the Wisconsin Department of Natural Resources; the University of Wisconsin Sea Grant College Program, National Oceanic and Atmospheric Administration, US Department of Commerce; the State of Wisconsin (Federal Grant NA46RG0481, Project No. R/AQ-38); and the USDA NOAA Project R/A-05-99, grant #NA86RG0048 to FG and SR. This study was also funded by the Norwegian Research Council (NFR)

    Wildfire may increase habitat quality for spring Chinook salmon in the Wenatchee River subbasin, WA, USA

    Get PDF
    Pacific Northwest salmonids are adapted to natural disturbance regimes that create dynamic habitat patterns over space and through time. However, human land use, particularly long-term fire suppression, has altered the intensity and frequency of wildfire in forested upland and riparian areas. To examine the potential impacts of wildfire on aquatic systems, we developed stream-reach-scale models of freshwater habitat for three life stages (adult, egg/fry, and juvenile) of spring Chinook salmon (Oncorhynchus tshawytscha) in the Wenatchee River subbasin, Washington. We used variables representing pre- and post-fire habitat conditions and employed novel techniques to capture changes in in-stream fine sediment, wood, and water temperature. Watershed-scale comparisons of high-quality habitat for each life stage of spring Chinook salmon habitat suggested that there are smaller quantities of high-quality juvenile overwinter habitat as compared to habitat for other life stages. We found that wildfire has the potential to increase quality of adult and overwintering juvenile habitat through increased delivery of wood, while decreasing the quality of egg and fry habitat due to the introduction of fine sediments. Model results showed the largest effect of fire on habitat quality associated with the juvenile life stage, resulting in increases in high-quality habitat in all watersheds. Due to the limited availability of pre-fire high-quality juvenile habitat, and increased habitat quality for this life stage post-fire, occurrence of characteristic wildfires would likely create a positive effect on spring Chinook salmon habitat in the Wenatchee River subbasin. We also compared pre- and post-fire model results of freshwater habitat for each life stage, and for the geometric mean of habitat quality across all life stages, using current compared to the historic distribution of spring Chinook salmon. We found that spring Chinook salmon are currently distributed in stream channels in which in-stream habitat for most life stages has a consistently positive response to fire. This compares to the historic distribution of spring Chinook, in which in-stream habitat exhibited a variable response to fire, including decreases in habitat quality overall or for specific life stages. This suggests that as the distribution of spring Chinook has decreased, they now occupy those areas with the most positive potential response to fire. Our work shows the potentially positive link between wildfire and aquatic habitat that supports forest managers in setting broader goals for fire management, perhaps leading to less fire suppression in some situations
    corecore