78 research outputs found
Genomic screening and causes of rare disorders
Congenital disorders affect approximately 3-4% of all children and often cause chronic
disabilities with significant impact on the lives of affected individuals and their families as
well as on the health-care system. These disorders constitute a large and heterogeneous
group of disorders with most of them being rare (prevalence <1/2000) and having an
underlying genetic basis. Understanding of the molecular etiology and phenotypic spectrum
has expanded during recent years. Over the past ten years, it has been shown that different
types of causative genetic variants, such as single nucleotide variants, small indels or copy
number variants, can be detected in many patients with congenital disorders. However, much
remain to be explored concerning the spectrum of genetic variants and phenotypes associated
to these disorders.
The studies in the thesis have focused on determining the molecular etiology of rare
congenital disorders and delineating the phenotypes associated with these disorders.
In order to achieve this, phenotypic investigations combined with genetic screening through
clinical array-CGH and whole exome sequencing, followed by a strategy for evaluation,
were performed in selected families. Twenty families with parental kinship and children
affected by presumed autosomal recessive disorders and one additional family with a de
novo dominant disorder were included in the studies. By this approach, a molecular
diagnosis could be determined in 15 out of 21 families. With the results from the studies,
the gene PIGT was established as a novel disease gene, the genes TFG and KIAA1109 were
confirmed as novel disease genes and additional candidate genes for congenital disorders
were identified. Furthermore, the phenotypes for disorders associated with the genes
MAN1B1, RIPK4 and FLVCR2 were expended and the spectrum of pathogenic variants in
the gene SATB2 was broadened.
The overall conclusions from the studies were that WES is a very powerful method for the
identification of disease-causing variants in consanguineous families and that the diversity
of AR diseases is enormous with many of the identified disorders being extremely rare. An
additional conclusion is that a detailed phenotypic assessment is crucial for interpretation of
data from large-scale genetic screening and for ascribing pathogenicity to the identified
variants. Moreover, the full spectrum of genetic variants, including sequence alterations and
CNVs, should be considered for the etiology of rare disorders.
The results altogether add detail to the clinical presentations of the given disorders and
expand the number of genes and genetic variants with a presumed or established causal
association to congenital disorders. Ultimately, this may increase the chances to achieve a
genetic diagnosis for future patients
Unraveling GRIA1 neurodevelopmental disorders:Lessons learned from the p.(Ala636Thr) variant
Ionotropic glutamate receptors (iGluRs), specifically α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs), play a crucial role in orchestrating excitatory neurotransmission in the brain. AMPARs are intricate assemblies of subunits encoded by four paralogous genes: GRIA1-4. Functional studies have established that rare GRIA variants can alter AMPAR currents leading to a loss- or gain-of-function. Patients affected by rare heterozygous GRIA variants tend to have family specific variants and only few recurrent variants have been reported. We deep-phenotyped a cohort comprising eight unrelated children and adults, harboring a recurrent and well-established disease-causing GRIA1 variant (NM_001114183.1: c.1906G>A, p.(Ala636Thr)). Recurrent symptoms included motor and/or language delay, mild–severe intellectual disability, behavioral and psychiatric comorbidities, hypotonia and epilepsy. We also report challenges in social skills, autonomy, living and work situation, and occupational levels. Furthermore, we compared their clinical manifestations in relation to those documented in patients presenting with rare heterozygous variants at analogous positions within paralogous genes. This study provides unprecedented details on the neurodevelopmental outcomes, cognitive abilities, seizure profiles, and behavioral abnormalities associated with p.(Ala636Thr) refining and broadening the clinical phenotype.</p
Rare deleterious mutations of HNRNP genes result in shared neurodevelopmental disorders
BACKGROUND: With the increasing number of genomic sequencing studies, hundreds of genes have been implicated in neurodevelopmental disorders (NDDs). The rate of gene discovery far outpaces our understanding of genotype-phenotype correlations, with clinical characterization remaining a bottleneck for understanding NDDs. Most disease-associated Mendelian genes are members of gene families, and we hypothesize that those with related molecular function share clinical presentations. METHODS: We tested our hypothesis by considering gene families that have multiple members with an enrichment of de novo variants among NDDs, as determined by previous meta-analyses. One of these gene families is the heterogeneous nuclear ribonucleoproteins (hnRNPs), which has 33 members, five of which have been recently identified as NDD genes (HNRNPK, HNRNPU, HNRNPH1, HNRNPH2, and HNRNPR) and two of which have significant enrichment in our previous meta-analysis of probands with NDDs (HNRNPU and SYNCRIP). Utilizing protein homology, mutation analyses, gene expression analyses, and phenotypic characterization, we provide evidence for variation in 12 HNRNP genes as candidates for NDDs. Seven are potentially novel while the remaining genes in the family likely do not significantly contribute to NDD risk. RESULTS: We report 119 new NDD cases (64 de novo variants) through sequencing and international collaborations and combined with published clinical case reports. We consider 235 cases with gene-disruptive single-nucleotide variants or indels and 15 cases with small copy number variants. Three hnRNP-encoding genes reach nominal or exome-wide significance for de novo variant enrichment, while nine are candidates for pathogenic mutations. Comparison of HNRNP gene expression shows a pattern consistent with a role in cerebral cortical development with enriched expression among radial glial progenitors. Clinical assessment of probands (n = 188-221) expands the phenotypes associated with HNRNP rare variants, and phenotypes associated with variation in the HNRNP genes distinguishes them as a subgroup of NDDs. CONCLUSIONS: Overall, our novel approach of exploiting gene families in NDDs identifies new HNRNP-related disorders, expands the phenotypes of known HNRNP-related disorders, strongly implicates disruption of the hnRNPs as a whole in NDDs, and supports that NDD subtypes likely have shared molecular pathogenesis. To date, this is the first study to identify novel genetic disorders based on the presence of disorders in related genes. We also perform the first phenotypic analyses focusing on related genes. Finally, we show that radial glial expression of these genes is likely critical during neurodevelopment. This is important for diagnostics, as well as developing strategies to best study these genes for the development of therapeutics.</p
Increasing involvement of CAPN1 variants in spastic ataxias and phenotype-genotype correlations
Spastic ataxias are rare neurogenetic disorders involving spinocerebellar and pyramidal tracts. Many genes are involved. Among them, CAPN1, when mutated, is responsible for a complex inherited form of spastic paraplegia (SPG76). We report the largest published series of 21 novel patients with nine new CAPN1 disease-causing variants and their clinical characteristics from two European university hospitals (Paris and Stockholm). After a formal clinical examination, causative variants were identified by next-generation sequencing and confirmed by Sanger sequencing. CAPN1 variants are a rare cause (~ 1.4%) of young-adult-onset spastic ataxia; however, together with all published cases, they allowed us to better describe the clinical and genetic spectra of this form. Truncating variants are the most frequent, and missense variants lead to earlier age at onset in favor of an additional deleterious effect. Cerebellar ataxia with cerebellar atrophy, dysarthria and lower limb weakness are often associated with spasticity. We also suggest that cognitive impairment and depression should be assessed specifically in the follow-up of SPG76 cases.Identification of new causative genes in spinocerebellar degenerations by combination of whole genome scan, next-generation sequencing and biological validation in vitro and in vivoInfrastructure de Recherche Translationnelle pour les Biothérapies en NeurosciencesEuropean Union’s Horizon 2020 research and innovation programm
Missense Variants in the Histone Acetyltransferase Complex Component Gene TRRAP Cause Autism and Syndromic Intellectual Disability.
Acetylation of the lysine residues in histones and other DNA-binding proteins plays a major role in regulation of eukaryotic gene expression. This process is controlled by histone acetyltransferases (HATs/KATs) found in multiprotein complexes that are recruited to chromatin by the scaffolding subunit transformation/transcription domain-associated protein (TRRAP). TRRAP is evolutionarily conserved and is among the top five genes intolerant to missense variation. Through an international collaboration, 17 distinct de novo or apparently de novo variants were identified in TRRAP in 24 individuals. A strong genotype-phenotype correlation was observed with two distinct clinical spectra. The first is a complex, multi-systemic syndrome associated with various malformations of the brain, heart, kidneys, and genitourinary system and characterized by a wide range of intellectual functioning; a number of affected individuals have intellectual disability (ID) and markedly impaired basic life functions. Individuals with this phenotype had missense variants clustering around the c.3127G>A p.(Ala1043Thr) variant identified in five individuals. The second spectrum manifested with autism spectrum disorder (ASD) and/or ID and epilepsy. Facial dysmorphism was seen in both groups and included upslanted palpebral fissures, epicanthus, telecanthus, a wide nasal bridge and ridge, a broad and smooth philtrum, and a thin upper lip. RNA sequencing analysis of skin fibroblasts derived from affected individuals skin fibroblasts showed significant changes in the expression of several genes implicated in neuronal function and ion transport. Thus, we describe here the clinical spectrum associated with TRRAP pathogenic missense variants, and we suggest a genotype-phenotype correlation useful for clinical evaluation of the pathogenicity of the variants
Pathogenic variants in SMARCA1 cause an X-linked neurodevelopmental disorder modulated by NURF complex composition
Pathogenic variants in ATP-dependent chromatin remodeling proteins are a recurrent cause of neurodevelopmental disorders (NDDs). The NURF complex consists of BPTF and either the SNF2H ( SMARCA5) or SNF2L ( SMARCA1) ISWI-chromatin remodeling enzyme. Pathogenic variants in BPTF and SMARCA5 were previously implicated in NDDs. Here, we describe 40 individuals from 30 families with de novo or maternally inherited pathogenic variants in SMARCA1. This novel NDD was associated with mild to severe ID/DD, delayed or regressive speech development, and some recurrent facial dysmorphisms. Individuals carrying SMARCA1 loss-of-function variants exhibited a mild genome-wide DNA methylation profile and a high penetrance of macrocephaly. Genetic dissection of the NURF complex using Smarca1, Smarca5, and Bptfsingle and double mouse knockouts revealed the importance of NURF composition and dosage for proper forebrain development. Finally, we propose that genetic alterations affecting different NURF components result in a NDD with a broad clinical spectrum
Germline loss-of-function mutations in EPHB4 cause a second form of capillary malformation-arteriovenous malformation (CM-AVM2) deregulating RAS-MAPK signaling
BACKGROUND: Most arteriovenous malformations (AVMs) are localized and occur sporadically. However, they also can be multifocal in autosomal-dominant disorders, such as hereditary hemorrhagic telangiectasia and capillary malformation (CM)-AVM. Previously, we identified RASA1 mutations in 50% of patients with CM-AVM. Herein we studied non-RASA1 patients to further elucidate the pathogenicity of CMs and AVMs.
METHODS: We conducted a genome-wide linkage study on a CM-AVM family. Whole-exome sequencing was also performed on 9 unrelated CM-AVM families. We identified a candidate gene and screened it in a large series of patients. The influence of several missense variants on protein function was also studied in vitro.
RESULTS: We found evidence for linkage in 2 loci. Whole-exome sequencing data unraveled 4 distinct damaging variants in EPHB4 in 5 families that cosegregated with CM-AVM. Overall, screening of EPHB4 detected 47 distinct mutations in 54 index patients: 27 led to a premature stop codon or splice-site alteration, suggesting loss of function. The other 20 are nonsynonymous variants that result in amino acid substitutions. In vitro expression of several mutations confirmed loss of function of EPHB4. The clinical features included multifocal CMs, telangiectasias, and AVMs.
CONCLUSIONS: We found EPHB4 mutations in patients with multifocal CMs associated with AVMs. The phenotype, CM-AVM2, mimics RASA1-related CM-AVM1 and also hereditary hemorrhagic telangiectasia. RASA1-encoded p120RASGAP is a direct effector of EPHB4. Our data highlight the pathogenetic importance of this interaction and indicts EPHB4-RAS-ERK signaling pathway as a major cause for AVMs
Inherited mosaicism for the supernumerary marker chromosome in cat eye syndrome: Inter- and intra-individual variation and correlation to the phenotype
We have studied a family with repeated transmission of mosaicism for a supernumerary marker chromosome (SMC), giving rise to varying symptoms of the cat eye syndrome (CES) in the offspring. The frequency of the SMC was investigated using FISH with probes from the CES critical region on lymphocytes as well as buccal cells. The same probes were used to study the frequency of the SMC in spermatozoa from the father. The SMC was characterized in detail using array-CGH and was found to correspond to a symmetrical cat eye SMC type I, with two extra copies of the most proximal part of 22q11, not extending into the classical 22q11.2 deletion region. Mosaicism for the SMC was detected in 4 out of 7 family members, the father and all his three children. The degree of mosaicism varied greatly between individuals as well as between tissues, with twice as many cells with the SMC in epithelial cells compared to blood. The highest frequency (almost 50%) was found in spermatozoa from the father. There was a direct correlation between the degree of mosaicism and the symptoms, varying from no obvious symptoms to classical CES. The study confirms the occurrence of direct transmission of SMC-mosaicism in CES. The results indicate that examination of parental epithelial cells should be preferred compared to blood cells in order to exclude a recurrence risk in parents of a child with CES. Interphase FISH analysis of spermatozoa is the most sensitive method to exclude paternal germ line mosaicsm. (c) 2012 Wiley Periodicals, Inc.</p
On Spinocerebellar Ataxia 21 as a Mimicker of Cerebral Palsy
ObjectivesSporadic variants in ataxia genes may mimic cerebral palsy (CP). Spinocerebellar ataxia 21 (SCA21), a very rare autosomal dominant disease, was discovered to be associated with variants in the transmembrane protein 240 (TMEM240) gene in 2014. In this report, we present 2 patients with sporadic SCA21, one of them diagnosed with ataxic CP.MethodsPatients provided oral and written consent. Comprehensive clinical evaluation, neuroimaging studies, review of previous psychometric evaluations, and whole-genome sequencing were applied in both cases.ResultsBoth patients presented with early-onset ataxia and exhibited mild parkinsonian features. Patient 1 experienced motor and speech delay, autism, and dyslexia, whereas patient 2 experienced dyslexia. Neuroimaging was normal in both cases. In patient 1, the previously reported pathogenic c.509C>T (Pro170Leu) variant in TMEM240 was detected, whereas patient 2 harbored the novel c.182_188delinsGGAT (Val61_Pro63delinsGlyMet) variant in the same gene. Both genetic variants were sporadic.DiscussionOur findings support the notion that SCA21 is a neurodevelopmental syndrome and a mimicker of ataxic CP. Both lack of a family history of ataxia and congenital presentation were reasonable arguments to consider ataxic CP. However, lack of convincing perinatal incidents, progressive symptoms, and the common presence of cerebellar atrophy should alert neurologists about SCA21.</jats:sec
- …
