3 research outputs found

    Spatio-Temporal Variation in Growth Performance and Condition of the Winged Pearl Oyster Pteria penguin

    Get PDF
    Environmental conditions can strongly influence the growth performance of pearl oysters and affect pearl farm production schedules. Growth and condition index (CI) of two age cohorts of Pteria penguin were measured for 13 months to investigate differences in growth performance between four culture sites within the northern (Vava’u) and southern (Tongatapu) island groups of the Kingdom of Tonga. Environmental conditions were also measured at culture sites and used to explore potential effects on oyster growth and condition. Between island groups, growth performance of P. penguin was superior at northern sites and was most strongly related to higher water temperatures at these sites. Within the southern island group, growth performance varied significantly between sites and may be driven by differences in wave energy. Monthly growth rates (GM) of P. penguin also showed significant temporal variation related to age and environmental conditions. This study demonstrated significant variation in the growth performance of P. penguin at latitudinal and local scales and suggests that in oligotrophic marine environments with minimal terrestrial inputs, such as Tonga, water temperature and wave exposure may be the primary environmental conditions influencing the growth performance of P. penguin. This study therefore recommends that optimal culture sites for P. penguin in Tonga are characterized primarily by warmer water temperatures (25–30°C) and low wave exposure (<15 joules m2 day–1). Culture of P. penguin at sites with more suitable environmental conditions enables pearl production to begin up to 34.2 % (6.5 months) earlier than at less-suitable sites and this may greatly influence mabĂ© pearl farm profitability and feasibility

    Local anaesthetic effects of benzene and structurally related molecules, including benzocaine, on the squid giant axon

    Get PDF
    Coral reefs are under threat and innovative management strategies are urgently required. However, discoveries from innovative fields of coral reef research are rarely transposed in practical conservation actions. This is mainly due to the difficulties in knowledge exchange between scientists and conservation stakeholders. The ManaCo consortium (http://manaco.ird.nc/) is an international network federating conservation stakeholders and researchers in a common effort to preserve the coral reefs. The focus is on using modern tools to build a bridge between indigenous knowledge and scientific innovation. ManaCo aims to orientate research toward relevant conservation needs and to facilitate the transposition of research into concrete management strategies. This will allow to coordinate a collaborative response against coral reef decline. We invite anyone sharing the same interests in joining us
    corecore