112 research outputs found

    Dynamics in Self-assembled Organic Monolayers at the Liquid/Solid Interface Revealed by Scanning Tunneling Microscopy

    Get PDF
    The liquid/solid interface provides an interesting medium for molecular self-assembly and scanning tunneling microscopy is the preferred technique to analyse the structural features of the surface-supported self-assembled monolayers in this medium. An interesting aspect is the phenomenon of molecular dynamics at the liquid/solid interface. In this mini-review, we report on our efforts and strategies to investigate and even induce molecular dynamics at the liquid/solid interface, bringing insight to various kinds of processes such as conformational, translational and adsorption/desorption dynamics

    Host-guest chemistry under confinement: peeking at early self-assembly events.

    Get PDF
    peer reviewedNanoscopic lateral confinement created on a graphite surface enabled the study of embryonic stages of molecular self-assembly on solid surfaces using scanning tunneling microscopy performed at the solution/solid interface

    High-Resolution Scanning Tunneling Microscopy Characterization of Mixed Monolayer Protected Gold Nanoparticles

    Get PDF
    Gold nanoparticles protected by a binary mixture of thiolate molecules have a ligand shell that can spontaneously separate into nanoscale domains. Complex morphologies arise in such ligand shells, including striped, patchy, and Janus domains. Characterization of these morphologies remains a challenge. Scanning tunneling microscopy (STM) imaging has been one of the key approaches to determine these structures, yet the imaging of nanoparticles’ surfaces faces difficulty stemming from steep surface curvature, complex molecular structures, and the possibility of imaging artifacts in the same size range. Images obtained to date have lacked molecular resolution, and only domains have been resolved. There is a clear need for images that resolve the molecular arrangement that leads to domain formation on the ligand shell of these particles. Herein we report an advance in the STM imaging of gold nanoparticles, revealing some of the molecules that constitute the domains in striped and Janus gold nanoparticles. We analyze the images to determine molecular arrangements on parts of the particles, highlight molecular “defects” present in the ligand shell, show persistence of the features across subsequent images, and observe the transition from quasi-molecular to domain resolution. The ability to resolve single molecules in the ligand shell of nanoparticles could lead to a more comprehensive understanding of the role of the ligand structure in determining the properties of mixed-monolayer-protected gold nanoparticles

    Ionic Liquid-Graphene Interface: Effect of Anions on the Fermi Level

    Get PDF
    peer reviewedSince energy conversion and storage processes take place at the electrolyte-electrode interface, it is important to develop experimental and theoretical procedures to understand the interfacial nanostructure in graphene-based electrochemical storage devices where ionic liquids (ILs) are used as electrolytes. In this contribution, the impact of the anions of imidazolium-based ILs on the IL-graphene interface as well as on the electronic structure of graphene is investigated. Raman spectroscopy unveils that 1-butyl-3-methylimidazolium ILs having smaller anions induce n-type doping, while ILs with larger anions have a negligible effect on the doping. Molecular modeling simulations reveal that changes in the electrostatic potential at the IL-graphene interface are responsible for the n-type doping

    Reversible Redox‐Driven Crystallization in a Paracyclophane Monolayer at a Solid–Liquid Interface

    Get PDF
    The development and integration of cyclophanes into future functional materials require a detailed understanding of the physicochemical principles that underlie their properties, phase behavior, and in particular the relationship between structure and function. Here, electrochemically switchable crystallization of a ferrocene‐bearing 3D Janus tecton (M‐Fc) at the interface between highly oriented pyrolytic graphite (HOPG) and an electrolyte solution is demonstrated. The M‐Fc adlayer is successfully visualized under both ambient and electrochemical conditions using scanning tunneling microscopy. Voltammetric measurements show a surface‐confined redox process for the M‐Fc modified surface that drives the phase transition between a visible 2D ordered linear phase (M‐Fc0, with ferrocene in the neutral state) and an invisible gas‐like adsorption layer with high mobility when ferrocene is oxidized, M‐Fc+, and a “square scheme” mechanism explains the data. Analogous experiments in a ferrocene‐free tecton adlayer show no phase transition and confirm that the dynamics in M‐Fc are redox‐driven. On‐surface 3D nanoarchitectures are also demonstrated by forming inclusion complexes between M‐Fc and ÎČ‐cyclodextrin and device behavior through electrochemical scanning tunneling spectroscopy (STS). These results showcase the functional potential of this class of cyclophanes, which can find use in actuators, optical crystals, and other smart materials

    Self-Assembly of Discrete Oligomers of Naphthalenediimides in Bulk and on Surfaces

    Get PDF
    Here, we report on the synthesis of discrete oligomers of alkyl-bridged naphthalenediimides (NDIs) and study their molecular nanostructures both in bulk, in solution, and at the liquid-solid interface. Via an iterative synthesis method, multiple NDI cores were bridged with short and saturated alkyl-diamines (C3 and C12) or long and unsaturated alkyl-diamines (u2C33 to u8C100) at their imide termini. The strong intermolecular interaction between the NDI cores was observed by probing their photophysical properties in solution. In bulk, the discrete NDI oligomers preferentially ordered in lamellar morphologies, irrespective of whether a saturated or unsaturated spacer was employed. Moreover, both the molecular architecture as well as the crystallization conditions play a significant role in the nanoscale ordering. The long unsaturated alkyl chains lead preferably to folded-chain conformations while their saturated analogues form stretched arrangements. At the solution-solid interface, well-defined lamellar regions were observed. These results show that precision in chemical structure alone is not sufficient to reach well-defined structures of discrete oligomers, but that it must be combined with precision in processing conditions.</p

    From One-Dimensional Disordered Racemate to Ordered Racemic Conglomerates through Metal-Coordination-Driven Self-Assembly at the Liquid-Solid Interface.

    Get PDF
    peer reviewedIn recent years, there has been significant focus on investigating and controlling chiral self-assembly, specifically in the context of enantiomeric separation. This study explores the self-assembly behavior of 4-dodecyl-3,6-di(2-pyridyl)pyridazine (DPP-C12) at the interface between heptanoic acid (HA) and highly oriented pyrolytic graphite (HOPG) using a combination of scanning tunneling microscopy (STM) and multiscale molecular modeling. The self-assembled monolayer structure formed by DPP-C12 is periodic in one direction, but aperiodic in the direction orthogonal to it. These structures resemble 1D disordered racemic compounds. Upon introducing palladium [Pd(II)] ions, complexing with DPP-C12, these 1D disordered racemic compounds spontaneously transform into 2D racemic conglomerates, which is rationalized with the assistance of force-field simulations. Our findings provide insights into the regulation of two-dimensional chirality

    Metal Ion and Guest-Mediated Spontaneous Resolution and Solvent-Induced Chiral Symmetry Breaking in Guanine-Based Metallosupramolecular Networks.

    Get PDF
    peer reviewedTwo-dimensional (2D) chirality has been actively studied in view of numerous applications of chiral surfaces such as in chiral resolutions and enantioselective catalysis. Here, we report on the expression and amplification of chirality in hybrid 2D metallosupramolecular networks formed by a nucleobase derivative. Self-assembly of a guanine derivative appended with a pyridyl node was studied at the solution-graphite interface in the presence and absence of coordinating metal ions. In the absence of coordinating metal ions, a monolayer that is representative of a racemic compound was obtained. This system underwent spontaneous resolution upon addition of a coordinating ion and led to the formation of a racemic conglomerate. The spontaneous resolution could also be achieved upon addition of a suitable guest molecule. The mirror symmetry observed in the formation of the metallosupramolecular networks could be broken via the use of an enantiopure solvent, which led to the formation of a globally homochiral surface

    Ambient Bistable Single Dipole Switching in a Molecular Monolayer

    Get PDF
    Reported here is a molecular dipole that self‐assembles into highly ordered patterns at the liquid‐solid interface, and it can be switched at room temperature between a bright and a dark state at the single‐molecule level. Using a scanning tunneling microscope (STM) under suitable bias conditions, binary information can be written at a density of up to 41 Tb cm−2 (256 Tb/in2). The written information is stable during reading at room temperature, but it can also be erased at will, instantly, by proper choice of tunneling conditions. DFT calculations indicate that the contrast and switching mechanism originate from the stacking sequence of the molecular dipole, which is reoriented by the electric field between the tip and substrate

    From 2D to 3D: Bridging Self-Assembled Monolayers to a Substrate-Induced Polymorph in a Molecular Semiconductor

    Get PDF
    peer reviewedIn this study, a new bottom-up approach is proposed to predict the crystal structure of the substrate-induced polymorph (SIP) of an archetypal molecular semiconductor. In spite of intense efforts, the formation mechanism of SIPs is still not fully understood, and predicting their crystal structure is a very delicate task. Here, we selected lead phthalocyanine (PbPc) as a prototypical molecular material because it is a highly symmetrical yet nonplanar molecule and we demonstrate that the growth and crystal structure of the PbPc SIPs can be templated by the corresponding physisorbed self-assembled molecular networks (SAMNs). Starting from SAMNs of PbPc formed at the solution/graphite interface, the structural and energetic aspects of the assembly were studied by a combination of in situ scanning tunneling microscopy and multiscale computational chemistry approach. Then, the growth of a PbPc SIP on top of the physisorbed monolayer was modeled without prior experimental knowledge, from which the crystal structure of the SIP was predicted. The theoretical prediction of the SIP was verified by determining the crystal structure of PbPc thin films using X-ray diffraction techniques, revealing the formation of a new polymorph of PbPc on the graphite substrate. This study clearly illustrates the correlation between the SAMNs and SIPs, which are traditionally considered as two separate but conceptually connected research areas. This approach is applicable to molecular materials in general to predict the crystal structure of their SIPs
    • 

    corecore