1,070 research outputs found

    Applying quantitative semantics to higher-order quantum computing

    Full text link
    Finding a denotational semantics for higher order quantum computation is a long-standing problem in the semantics of quantum programming languages. Most past approaches to this problem fell short in one way or another, either limiting the language to an unusably small finitary fragment, or giving up important features of quantum physics such as entanglement. In this paper, we propose a denotational semantics for a quantum lambda calculus with recursion and an infinite data type, using constructions from quantitative semantics of linear logic

    Constraints on filament models deduced from dynamical analysis

    Get PDF
    The conclusions deduced from simultaneous observations with the Ultra-Violet Spectrometer and Polarimeter (UVSP) on the Solar Maximum Mission satellite, and the Multichannel Subtractive Double Pass (MSPD) spectrographs at Meudon and Pic du Midi observatories are presented. The observations were obtained in 1980 and 1984. All instruments have almost the same field of view and provide intensity and velocity maps at two temperatures. The resolution is approx. 0.5 to 1.5" for H alpha line and 3" for C IV. The high resolution and simultaneity of the two types of observations allows a more accurate description of the flows in prominences as functions of temperature and position. The results put some contraints on the models and show that dynamical aspects must be taken into account

    VHF discharges in storm cells producing microbursts

    Get PDF
    An experiment was carried out in which 3-D mapping of VHF sources was compared to a 3-D description of the reflectivity and dynamics of associated cloud cells observed by a radar network. Data from 61 microbursts were analyzed and it was found that, in 93 pct. of the cases, electrical activity precedes outflow development. The results confirm that the peak in intracloud activity precedes the maximum value of the outflow

    The photospheric solar oxygen project: III. Investigation of the centre-to-limb variation of the 630nm [OI]-NiI blend

    Full text link
    The solar photospheric abundance of oxygen is still a matter of debate. For about ten years some determinations have favoured a low oxygen abundance which is at variance with the value inferred by helioseismology. Among the oxygen abundance indicators, the forbidden line at 630nm has often been considered the most reliable even though it is blended with a NiI line. In Papers I and Paper II of this series we reported a discrepancy in the oxygen abundance derived from the 630nm and the subordinate [OI] line at 636nm in dwarf stars, including the Sun. Here we analyse several, in part new, solar observations of the the centre-to-limb variation of the spectral region including the blend at 630nm in order to separate the individual contributions of oxygen and nickel. We analyse intensity spectra observed at different limb angles in comparison with line formation computations performed on a CO5BOLD 3D hydrodynamical simulation of the solar atmosphere. The oxygen abundances obtained from the forbidden line at different limb angles are inconsistent if the commonly adopted nickel abundance of 6.25 is assumed in our local thermodynamic equilibrium computations. With a slightly lower nickel abundance, A(Ni)~6.1, we obtain consistent fits indicating an oxygen abundance of A(O)=8.73+/-0.05. At this value the discrepancy with the subordinate oxygen line remains. The derived value of the oxygen abundance supports the notion of a rather low oxygen abundance in the solar hotosphere. However, it is disconcerting that the forbidden oxygen lines at 630 and 636nm give noticeably different results, and that the nickel abundance derived here from the 630nm blend is lower than expected from other nickel lines.Comment: to appear in A&

    Rejection-free Geometric Cluster Algorithm for Complex Fluids

    Full text link
    We present a novel, generally applicable Monte Carlo algorithm for the simulation of fluid systems. Geometric transformations are used to identify clusters of particles in such a manner that every cluster move is accepted, irrespective of the nature of the pair interactions. The rejection-free and non-local nature of the algorithm make it particularly suitable for the efficient simulation of complex fluids with components of widely varying size, such as colloidal mixtures. Compared to conventional simulation algorithms, typical efficiency improvements amount to several orders of magnitude

    The production of reduced-alcohol wines using Gluzyme Mono® 10.000 BG-treated grape juice

    Get PDF
    High alcohol wines have become a major challenge in the international wine trade. Several physical processes areused to produce wines with reduced-alcohol content, all of which involve the selective extraction of ethanol basedon volatility or diffusion. In this study, the possibility of Gluzyme Mono® 10.000 BG (Gluzyme) (Novozymes, SouthAfrica) to reduce the glucose content of synthetic grape juice before fermentation was investigated in order to producewine with reduced-alcohol content. Gluzyme is a glucose oxidase preparation from Aspergillus oryzae, currently usedin the baking industry. Glucose oxidase catalyses the oxidation of glucose to gluconic acid and hydrogen peroxide(H2O2) in the presence of molecular oxygen. Gluzyme was initially used in synthetic grape juice, where differentenzyme concentrations and factors influencing its efficiency were investigated under winemaking conditions. Theresults showed up to 0.5% v/v less alcohol at an enzyme concentration of 20 kU compared to the control samples.This reduction in alcohol was increased to 1 and 1.3% v/v alcohol at pH 3.5 and pH 5.5 respectively in aerated (8mg/L O2) synthetic grape juice using 30 kU enzyme. Secondly, Gluzyme was used to treat Pinotage grape mustbefore fermentation. Gluzyme-treated wines at 30 kU enzyme concentration after fermentation contained 0.68%v/v less alcohol than the control wines. A decrease in acetic acid concentration of the treated compared to controlwines was also observed

    On the existence of oscillations in solar filaments observed in H alpha and C IV lines

    Get PDF
    Time sequence observations of filaments in both the H alpha line and the 1548 A C IV line were analyzed with the Fourier transform technique in the frequency range (1 - 10 mHz). No oscillation is detected in filaments except at the footpoints where a steady velocity gradient is large. The energy is probably due to convective motions rather than pressure oscillations

    Coronal magnetic reconnection driven by CME expansion -- the 2011 June 7 event

    Get PDF
    Coronal mass ejections (CMEs) erupt and expand in a magnetically structured solar corona. Various indirect observational pieces of evidence have shown that the magnetic field of CMEs reconnects with surrounding magnetic fields, forming, e.g., dimming regions distant from the CME source regions. Analyzing Solar Dynamics Observatory (SDO) observations of the eruption from AR 11226 on 2011 June 7, we present the first direct evidence of coronal magnetic reconnection between the fields of two adjacent ARs during a CME. The observations are presented jointly with a data-constrained numerical simulation, demonstrating the formation/intensification of current sheets along a hyperbolic flux tube (HFT) at the interface between the CME and the neighbouring AR 11227. Reconnection resulted in the formation of new magnetic connections between the erupting magnetic structure from AR 11226 and the neighboring active region AR 11227 about 200 Mm from the eruption site. The onset of reconnection first becomes apparent in the SDO/AIA images when filament plasma, originally contained within the erupting flux rope, is re-directed towards remote areas in AR 11227, tracing the change of large-scale magnetic connectivity. The location of the coronal reconnection region becomes bright and directly observable at SDO/AIA wavelengths, owing to the presence of down-flowing cool, dense (10^{10} cm^{-3}) filament plasma in its vicinity. The high-density plasma around the reconnection region is heated to coronal temperatures, presumably by slow-mode shocks and Coulomb collisions. These results provide the first direct observational evidence that CMEs reconnect with surrounding magnetic structures, leading to a large-scale re-configuration of the coronal magnetic field.Comment: 12 pages, 12 figure

    On mesogranulation, network formation and supergranulation

    Get PDF
    We present arguments which show that in all likelihood mesogranulation is not a true scale of solar convection but the combination of the effects of both highly energetic granules, which give birth to strong positive divergences (SPDs) among which we find exploders, and averaging effects of data processing. The important role played by SPDs in horizontal velocity fields appears in the spectra of these fields where the scale \sim4 Mm is most energetic; we illustrate the effect of averaging with a one-dimensional toy model which shows how two independent non-moving (but evolving) structures can be transformed into a single moving structure when time and space resolution are degraded. The role of SPDs in the formation of the photospheric network is shown by computing the advection of floating corks by the granular flow. The coincidence of the network bright points distribution and that of the corks is remarkable. We conclude with the possibility that supergranulation is not a proper scale of convection but the result of a large-scale instability of the granular flow, which manifests itself through a correlation of the flows generated by SPDs.Comment: 10 pages, 11 figures, to appear in Astronomy and Astrophysic
    corecore