137 research outputs found

    Insights into GABA receptor signalling in TM3 Leydig cells

    Get PDF
    gamma-Aminobutyric acid (GABA) is an emerging signalling molecule in endocrine organs, since it is produced by endocrine cells and acts via GABA(A) receptors in a paracrine/autocrine fashion. Testicular Leydig cells are producers and targets for GABA. These cells express GABA(A) receptor subunits and in the murine Leydig cell line TM3 pharmacological activation leads to increased proliferation. The signalling pathway of GABA in these cells is not known in this study. We therefore attempted to elucidate details of GABA(A) signalling in TM3 and adult mouse Leydig cells using several experimental approaches. TM3 cells not only express GABA(A) receptor subunits, but also bind the GABA agonist {[}H-3] muscimol with a binding affinity in the range reported for other endocrine cells (K-d = 2.740 +/- 0.721 nM). However, they exhibit a low B-max value of 28.08 fmol/mg protein. Typical GABA(A) receptor-associated events, including Cl- currents, changes in resting membrane potential, intracellular Ca2+ or cAMP, were not measurable with the methods employed in TM3 cells, or, as studied in part, in primary mouse Leydig cells. GABA or GABA(A) agonist isoguvacine treatment resulted in increased or decreased levels of several mRNAs, including transcription factors (c-fos, hsf-1, egr-1) and cell cycle-associated genes (Cdk2, cyclin D1). In an attempt to verify the cDNA array results and because egr-1 was recently implied in Leydig cell development, we further studied this factor. RT-PCR and Western blotting confirmed a time-dependent regulation of egr-1 in TM3. In the postnatal testis egr-1 was seen in cytoplasmic and nuclear locations of developing Leydig cells, which bear GABA(A) receptors and correspond well to TM3 cells. Thus, GABA acts via an untypical novel signalling pathway in TM3 cells. Further details of this pathway remain to be elucidated. Copyright (c) 2005 S. Karger AG, Base

    Immunologic and vascular biomarkers of mortality in critical COVID-19 in a South African cohort

    Get PDF
    Introduction: Biomarkers predicting mortality among critical Coronavirus disease 2019 (COVID-19) patients provide insight into the underlying pathophysiology of fatal disease and assist with triaging of cases in overburdened settings. However, data describing these biomarkers in Sub-Saharan African populations are sparse. Methods: We collected serum samples and corresponding clinical data from 87 patients with critical COVID-19 on day 1 of admission to the intensive care unit (ICU) of a tertiary hospital in Cape Town, South Africa, during the second wave of the COVID-19 pandemic. A second sample from the same patients was collected on day 7 of ICU admission. Patients were followed up until in-hospital death or hospital discharge. A custom-designed 52 biomarker panel was performed on the Luminex® platform. Data were analyzed for any association between biomarkers and mortality based on pre-determined functional groups, and individual analytes. Results: Of 87 patients, 55 (63.2%) died and 32 (36.8%) survived. We found a dysregulated cytokine response in patients who died, with elevated levels of type-1 and type-2 cytokines, chemokines, and acute phase reactants, as well as reduced levels of regulatory T cell cytokines. Interleukin (IL)-15 and IL-18 were elevated in those who died, and levels reduced over time in those who survived. Procalcitonin (PCT), C-reactive protein, Endothelin-1 and vascular cell adhesion molecule-1 were elevated in those who died. Discussion: These results show the pattern of dysregulation in critical COVID-19 in a Sub-Saharan African cohort. They suggest that fatal COVID-19 involved excessive activation of cytotoxic cells and the NLRP3 (nucleotide-binding domain, leucine-rich–containing family, pyrin domain–containing-3) inflammasome. Furthermore, superinfection and endothelial dysfunction with thrombosis might have contributed to mortality. HIV infection did not affect the outcome. A clinically relevant biosignature including PCT, pH and lymphocyte percentage on differential count, had an 84.8% sensitivity for mortality, and outperformed the Luminex-derived biosignature

    Neutrophil degranulation, NETosis and platelet degranulation pathway genes are co-induced in whole blood up to six months before tuberculosis diagnosis

    Get PDF
    Mycobacterium tuberculosis (M.tb) causes tuberculosis (TB) and remains one of the leading causes of mortality due to an infectious pathogen. Host immune responses have been implicated in driving the progression from infection to severe lung disease. We analyzed longitudinal RNA sequencing (RNAseq) data from the whole blood of 74 TB progressors whose samples were grouped into four six-month intervals preceding diagnosis (the GC6-74 study). We additionally analyzed RNAseq data from an independent cohort of 90 TB patients with positron emission tomography-computed tomography (PET-CT) scan results which were used to categorize them into groups with high and low levels of lung damage (the Catalysis TB Biomarker study). These groups were compared to non-TB controls to obtain a complete whole blood transcriptional profile for individuals spanning from early stages of M.tb infection to TB diagnosis. The results revealed a steady increase in the number of genes that were differentially expressed in progressors at time points closer to diagnosis with 278 genes at 13-18 months, 742 at 7-12 months and 5,131 detected 1-6 months before diagnosis and 9,205 detected in TB patients. A total of 2,144 differentially expressed genes were detected when comparing TB patients with high and low levels of lung damage. There was a large overlap in the genes upregulated in progressors 1-6 months before diagnosis (86%) with those in TB patients. A comprehensive pathway analysis revealed a potent activation of neutrophil and platelet mediated defenses including neutrophil and platelet degranulation, and NET formation at both time points. These pathways were also enriched in TB patients with high levels of lung damage compared to those with low. These findings suggest that neutrophils and platelets play a critical role in TB pathogenesis, and provide details of the timing of specific effector mechanisms that may contribute to TB lung pathology

    Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir

    Get PDF
    Many crops display differential geographic phenotypes and sensorial signatures, encapsulated by the concept of terroir. The drivers behind these differences remain elusive, and the potential contribution of microbes has been ignored until recently. Significant genetic differentiation between microbial communities and populations from different geographic locations has been demonstrated, but crucially it has not been shown whether this correlates with differential agricultural phenotypes or not. Using wine as a model system, we utilize the regionally genetically differentiated population of Saccharomyces cerevisiae in New Zealand and objectively demonstrate that these populations differentially affect wine phenotype, which is driven by a complex mix of chemicals. These findings reveal the importance of microbial populations for the regional identity of wine, and potentially extend to other important agricultural commodities. Moreover, this suggests that long-term implementation of methods maintaining differential biodiversity may have tangible economic imperatives as well as being desirable in terms of employing agricultural practices that increase responsible environmental stewardship

    Site of Allergic Airway Narrowing and the Influence of Exogenous Surfactant in the Brown Norway Rat

    Get PDF
    Background: The parameters RN (Newtonian resistance), G (tissue damping), and H (tissue elastance) of the constant phase model of respiratory mechanics provide information concerning the site of altered mechanical properties of the lung. The aims of this study were to compare the site of allergic airway narrowing implied from respiratory mechanics to a direct assessment by morphometry and to evaluate the effects of exogenous surfactant administration on the site and magnitude of airway narrowing. Methods: We induced airway narrowing by ovalbumin sensitization and challenge and we tested the effects of a natural surfactant lacking surfactant proteins A and D (InfasurfH) on airway responses. Sensitized, mechanically ventilated Brown Norway rats underwent an aerosol challenge with 5 % ovalbumin or vehicle. Other animals received nebulized surfactant prior to challenge. Three or 20 minutes after ovalbumin challenge, airway luminal areas were assessed on snap-frozen lungs by morphometry. Results: At 3 minutes, RN and G detected large airway narrowing whereas at 20 minutes G and H detected small airway narrowing. Surfactant inhibited RN at the peak of the early allergic response and ovalbumin-induced increase in bronchoalveolar lavage fluid cysteinyl leukotrienes and amphiregulin but not IgE-induced mast cell activation in vitro. Conclusion: Allergen challenge triggers the rapid onset of large airway narrowing, detected by RN and G, and subsequen

    Transcriptional profiles predict treatment outcome in patients with tuberculosis and diabetes at diagnosis and at two weeks after initiation of anti-tuberculosis treatment.

    Get PDF
    BACKGROUND: Globally, the tuberculosis (TB) treatment success rate is approximately 85%, with treatment failure, relapse and death occurring in a significant proportion of pulmonary TB patients. Treatment success is lower among people with diabetes mellitus (DM). Predicting treatment outcome early after diagnosis, especially in TB-DM patients, would allow early treatment adaptation for individuals and may improve global TB control. METHODS: Samples were collected in a longitudinal cohort study of adult TB patients from South Africa (n  =  94) and Indonesia (n  =  81), who had concomitant DM (n  =  59), intermediate hyperglycaemia (n  =  79) or normal glycaemia/no DM (n  =  37). Treatment outcome was monitored, and patients were categorized as having a good (cured) or poor (failed, recurrence, died) outcome during treatment and 12 months follow-up. Whole blood transcriptional profiles before, during and at the end of TB treatment were characterized using unbiased RNA-Seq and targeted gene dcRT-MLPA. FINDINGS: We report differences in whole blood transcriptome profiles, which were observed before initiation of treatment and throughout treatment, between patients with a good versus poor TB treatment outcome. An eight-gene and a 22-gene blood transcriptional signature distinguished patients with a good TB treatment outcome from patients with a poor TB treatment outcome at diagnosis (AUC = 0·815) or two weeks (AUC = 0·834) after initiation of TB treatment, respectively. High accuracy was obtained by cross-validating this signature in an external cohort (AUC = 0·749). INTERPRETATION: These findings suggest that transcriptional profiles can be used as a prognostic biomarker for treatment failure and success, even in patients with concomitant DM. FUNDING: The research leading to these results, as part of the TANDEM Consortium, received funding from the European Community's Seventh Framework Programme (FP7/2007-2013 Grant Agreement No. 305279) and the Netherlands Organization for Scientific Research (NWO-TOP Grant Agreement No. 91214038). The research leading to the results presented in the Indian validation cohort was supported by Research Council of Norway Global Health and Vaccination Research (GLOBVAC) projects: RCN 179342, 192534, and 248042, the University of Bergen (Norway)

    Allergic sensitization: screening methods

    Get PDF
    Experimental in silico, in vitro, and rodent models for screening and predicting protein sensitizing potential are discussed, including whether there is evidence of new sensitizations and allergies since the introduction of genetically modified crops in 1996, the importance of linear versus conformational epitopes, and protein families that become allergens. Some common challenges for predicting protein sensitization are addressed: (a) exposure routes; (b) frequency and dose of exposure; (c) dose-response relationships; (d) role of digestion, food processing, and the food matrix; (e) role of infection; (f) role of the gut microbiota; (g) influence of the structure and physicochemical properties of the protein; and (h) the genetic background and physiology of consumers. The consensus view is that sensitization screening models are not yet validated to definitively predict the de novo sensitizing potential of a novel protein. However, they would be extremely useful in the discovery and research phases of understanding the mechanisms of food allergy development, and may prove fruitful to provide information regarding potential allergenicity risk assessment of future products on a case by case basis. These data and findings were presented at a 2012 international symposium in Prague organized by the Protein Allergenicity Technical Committee of the International Life Sciences Institute’s Health and Environmental Sciences Institute
    corecore