215 research outputs found

    Enhanced osteogenic differentiation in zoledronate-treated osteoporotic patients

    Get PDF
    Bisphosphonates are well known inhibitors of osteoclast activity and thus may be employed to influence osteoblast activity. The present study was designed to evaluate the in vivo effects of zoledronic acid (ZA) on the proliferation and osteoblastic commitment of mesenchymal stem cells (MSC) in osteoporotic patients. We studied 22 postmenopausal osteoporotic patients. Densitometric, biochemical, cellular and molecular data were collected before as well as after 6 and 12 months of ZA treatment. Peripheral blood MSC-like cells were quantified by colony-forming unit fibroblastic assay; their osteogenic differentiation potential was evaluated after 3 and 7 days of induction, respectively. Circulating MSCs showed significantly increased expression levels of osteoblastic marker genes such as Runt-related transcription factor 2 (RUNX2), and Osteonectin (SPARC) during the 12 months of monitoring time. Lumbar bone mineral density (BMD) variation and SPARC gene expression correlated positively. Bone turnover marker levels were significantly lowered after ZA treatment; the effect was more pronounced for C terminal telopeptide (CTX) than for Procollagen Type 1 N-Terminal Propeptide (P1NP) and bone alkaline phosphatase (bALP). Our findings suggest a discrete anabolic activity supported by osteogenic commitment of MSCs, consequent to ZA treatment. We confirm its anabolic effects in vivo on osteogenic precursors

    GATK hard filtering: tunable parameters to improve variant calling for next generation sequencing targeted gene panel data

    Get PDF
    BACKGROUND: NGS technology represents a powerful alternative to the standard Sanger sequencing in the context of clinical setting. The proprietary software that are generally used for variant calling often depend on preset parameters that may not fit in a satisfactory manner for different genes. GATK, which is widely used in the academic world, is rich in parameters for variant calling. However the self-adjusting parameter calibration of GATK requires data from a large number of exomes. When these are not available, which is the standard condition of a diagnostic laboratory, the parameters must be set by the operator (hard filtering). The aim of the present paper was to set up a procedure to assess the best parameters to be used in the hard filtering of GATK. This was pursued by using classification trees on true and false variants from simulated sequences of a real dataset data. RESULTS: We simulated two datasets, with different coverages, including all the sequence alterations identified in a real dataset according to their observed frequencies. Simulated sequences were aligned with standard protocols and then regression trees were built up to identify the most reliable parameters and cutoff values to discriminate true and false variant calls. Moreover, we analyzed flanking sequences of region presenting a high rate of false positive calls observing that such sequences present a low complexity make up. CONCLUSIONS: Our results showed that GATK hard filtering parameter values can be tailored through a simulation study based-on the DNA region of interest to ameliorate the accuracy of the variant calling

    Computational annotation of UTR cis-regulatory modules through Frequent Pattern Mining

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many studies report about detection and functional characterization of cis-regulatory motifs in untranslated regions (UTRs) of mRNAs but little is known about the nature and functional role of their distribution. To address this issue we have developed a computational approach based on the use of data mining techniques. The idea is that of mining frequent combinations of translation regulatory motifs, since their significant co-occurrences could reveal functional relationships important for the post-transcriptional control of gene expression. The experimentation has been focused on targeted mitochondrial transcripts to elucidate the role of translational control in mitochondrial biogenesis and function.</p> <p>Results</p> <p>The analysis is based on a two-stepped procedure using a sequential pattern mining algorithm. The first step searches for frequent patterns (FPs) of motifs without taking into account their spatial displacement. In the second step, frequent sequential patterns (FSPs) of spaced motifs are generated by taking into account the conservation of spacers between each ordered pair of co-occurring motifs. The algorithm makes no assumption on the relation among motifs and on the number of motifs involved in a pattern. Different FSPs can be found depending on different combinations of two parameters, i.e. the threshold of the minimum percentage of sequences supporting the pattern, and the granularity of spacer discretization. Results can be retrieved at the UTRminer web site: <url>http://utrminer.ba.itb.cnr.it/</url>. The discovered FPs of motifs amount to 216 in the overall dataset and to 140 in the human subset. For each FP, the system provides information on the discovered FSPs, if any. A variety of search options help users in browsing the web resource. The list of sequence IDs supporting each pattern can be used for the retrieval of information from the UTRminer database.</p> <p>Conclusion</p> <p>Computational prediction of structural properties of regulatory sequences is not trivial. The presented data mining approach is able to overcome some limits observed in other competitive tools. Preliminary results on UTR sequences from nuclear transcripts targeting mitochondria are promising and lead us to be confident on the effectiveness of the approach for future developments.</p

    Impact of Antigen Presentation Mechanisms on Immune Response in Autoimmune Hepatitis

    Get PDF
    The liver is a very tolerogenic organ. It is continually exposed to a multitude of antigens and is able to promote an effective immune response against pathogens and simultaneously immune tolerance against self-antigens. In spite of strong peripheral and central tolerogenic mechanisms, loss of tolerance can occur in autoimmune liver diseases, such as autoimmune hepatitis (AIH) through a combination of genetic predisposition, environmental factors, and an imbalance in immunological regulatory mechanisms. The liver hosts several types of conventional resident antigen presenting cells (APCs) such as dendritic cells, B cells and macrophages (Kupffer cells), and unconventional APCs including liver sinusoidal endothelial cells, hepatic stellate cells and hepatocytes. By standard (direct presentation and cross-presentation) and alternative mechanisms (cross-dressing and MHC class II-dressing), liver APCs presents self-antigen to naive T cells in the presence of costimulation leading to an altered immune response that results in liver injury and inflammation. Additionally, the transport of antigens and antigen:MHC complexes by trogocytosis and extracellular vesicles between different cells in the liver contributes to enhance antigen presentation and amplify autoimmune response. Here, we focus on the impact of antigen presentation on the immune response in the liver and on the functional role of the immune cells in the induction of liver inflammation. A better understanding of these key pathogenic aspects could facilitate the establishment of novel therapeutic strategies in AIH

    Antibiotics or No Antibiotics, That Is the Question: An Update on Efficient and Effective Use of Antibiotics in Dental Practice

    Get PDF
    The antimicrobial resistance (AMR) phenomenon is an emerging global problem and is induced by overuse and misuse of antibiotics in medical practice. In total, 10% of antibiotic prescriptions are from dentists, usually to manage oro-dental pains and avoid postsurgical complications. Recent research and clinical evaluations highlight new therapeutical approaches with a reduction in dosages and number of antibiotic prescriptions and recommend focusing on an accurate diagnosis and improvement of oral health before dental treatments and in patients' daily lives. In this article, the most common clinical and operative situations in dental practice, such as endodontics, management of acute alveolar abscesses, extractive oral surgery, parodontology and implantology, are recognized and summarized, suggesting possible guidelines to reduce antibiotic prescription and consumption, maintaining high success rates and low complications rates. Additionally, the categories of patients requiring antibiotic administration for pre-existing conditions are recapitulated. To reduce AMR threat, it is important to establish protocols for treatment with antibiotics, to be used only in specific situations. Recent reviews demonstrate that, in dentistry, it is possible to minimize the use of antibiotics, thoroughly assessing patient's conditions and type of intervention, thus improving their efficacy and reducing the adverse effects and enhancing the modern concept of personalized medicine

    New Insights into the Runt Domain of RUNX2 in Melanoma Cell Proliferation and Migration

    Get PDF
    The mortality rate for malignant melanoma (MM) is very high, since it is highly invasive and resistant to chemotherapeutic treatments. The modulation of some transcription factors affects cellular processes in MM. In particular, a higher expression of the osteogenic master gene RUNX2 has been reported in melanoma cells, compared to normal melanocytes. By analyzing public databases for recurrent RUNX2 genetic and epigenetic modifications in melanoma, we found that the most common RUNX2 genetic alteration that exists in transcription upregulation is, followed by genomic amplification, nucleotide substitution and multiple changes. Additionally, altered RUNX2 is involved in unchecked pathways promoting tumor progression, Epithelial Mesenchymal Transition (EMT), and metastasis. In order to investigate further the role of RUNX2 in melanoma development and to identify a therapeutic target, we applied the CRISPR/Cas9 technique to explore the role of the RUNT domain of RUNX2 in a melanoma cell line. RUNT-deleted cells showed reduced proliferation, increased apoptosis, and reduced EMT features, suggesting the involvement of the RUNT domain in different pathways. In addition, del-RUNT cells showed a downregulation of genes involved in migration ability. In an in vivo zebrafish model, we observed that wild-type melanoma cells migrated in 81% of transplanted fishes, while del-RUNT cells migrated in 58%. All these findings strongly suggest the involvement of the RUNT domain in melanoma metastasis and cell migration and indicate RUNX2 as a prospective target in MM therapy

    The Evolving Role of Immune Checkpoint Inhibitors in Hepatocellular Carcinoma Treatment

    Get PDF
    Hepatocellular carcinoma (HCC) is one of most common cancers and the fourth leading cause of death worldwide. Commonly, HCC development occurs in a liver that is severely compromised by chronic injury or inflammation. Liver transplantation, hepatic resection, radiofrequency ablation (RFA), transcatheter arterial chemoembolization (TACE), and targeted therapies based on tyrosine protein kinase inhibitors are the most common treatments. The latter group have been used as the primary choice for a decade. However, tumor microenvironment in HCC is strongly immunosuppressive; thus, new treatment approaches for HCC remain necessary. The great expression of immune checkpoint molecules, such as programmed death-1 (PD-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4), lymphocyte activating gene 3 protein (LAG-3), and mucin domain molecule 3 (TIM-3), on tumor and immune cells and the high levels of immunosuppressive cytokines induce T cell inhibition and represent one of the major mechanisms of HCC immune escape. Recently, immunotherapy based on the use of immune checkpoint inhibitors (ICIs), as single agents or in combination with kinase inhibitors, anti-angiogenic drugs, chemotherapeutic agents, and locoregional therapies, offers great promise in the treatment of HCC. This review summarizes the recent clinical studies, as well as ongoing and upcoming trials

    Typological and Technological Study of Prehistoric Implements in Animal Hard Tissues

    Get PDF
    Several series of prehistoric implements in animal hard tissues, either from ancient and recent excavations, were studied by the typological and technological points of views. Their morpho-typological description was in many cases associated to microscopic study of surface modifications, often allowing identification of traces related to manufacture. This technological information in some cases could be integrated by the observations of use-wear, thus providing functional indications. Implements came from sites of different antiquity and different geographic areas (from Liguria to Calabria). Implements considered by the research program included tools, pendants and other ornamental objects, as well as unfinished implements and manufacture left-overs often identified during revision of faunal remains. Middle Paleolithic bone fragments bearing traces of non-alimentary anthropic actions were limited to the so-called »retouchers«. However, during Upper Paleolithic, implements in animal hard tissues were relatively frequent in most Italian sites, even if those industries were not so rich, elaborated and typologically differentiated as in other European area

    Actors on the Scene: Immune Cells in the Myeloma Niche

    Get PDF
    Two mechanisms are involved in the immune escape of cancer cells: the immunoediting of tumor cells and the suppression of the immune system. Both processes have been revealed in multiple myeloma (MM). Complex interactions between tumor plasma cells and the bone marrow (BM) microenvironment contribute to generate an immunosuppressive milieu characterized by high concentration of immunosuppressive factors, loss of effective antigen presentation, effector cell dysfunction, and expansion of immunosuppressive cell populations, such as myeloid-derived suppressor cells, regulatory T cells and T cells expressing checkpoint molecules such as programmed cell death 1. Considering the great immunosuppressive impact of BM myeloma microenvironment, many strategies to overcome it and restore myeloma immunosurveillance have been elaborated. The most successful ones are combined approaches such as checkpoint inhibitors in combination with immunomodulatory drugs, anti-monoclonal antibodies, and proteasome inhibitors as well as chimeric antigen receptor (CAR) T cell therapy. How best to combine anti-MM therapies and what is the optimal timing to treat the patient are important questions to be addressed in future trials. Moreover, intratumor MM heterogeneity suggests the crucial importance of tailored therapies to identify patients who might benefit the most from immunotherapy, reaching deeper and more durable responses
    • 

    corecore