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Abstract

Background: NGS technology represents a powerful alternative to the standard Sanger sequencing in the context
of clinical setting. The proprietary software that are generally used for variant calling often depend on preset
parameters that may not fit in a satisfactory manner for different genes.
GATK, which is widely used in the academic world, is rich in parameters for variant calling. However the self-
adjusting parameter calibration of GATK requires data from a large number of exomes. When these are not
available, which is the standard condition of a diagnostic laboratory, the parameters must be set by the operator
(hard filtering). The aim of the present paper was to set up a procedure to assess the best parameters to be used in
the hard filtering of GATK. This was pursued by using classification trees on true and false variants from simulated
sequences of a real dataset data.

Results: We simulated two datasets, with different coverages, including all the sequence alterations identified in a
real dataset according to their observed frequencies. Simulated sequences were aligned with standard protocols
and then regression trees were built up to identify the most reliable parameters and cutoff values to discriminate
true and false variant calls. Moreover, we analyzed flanking sequences of region presenting a high rate of false
positive calls observing that such sequences present a low complexity make up.

Conclusions: Our results showed that GATK hard filtering parameter values can be tailored through a simulation
study based-on the DNA region of interest to ameliorate the accuracy of the variant calling.
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Background
In the last decade, sequencing technologies, the so-
called next generation sequencing (NGS), have delivered
a step change in the ability to sequence genome, leading
to a state of permanent evolution.
NGS platforms allow to detect mutations significantly

reducing time and costs [1, 2]. Ion Torrent Personal

Genome Machine (PGM) started to be distributed in
2011 [3] and thus to be used for the identification of
genetic variants associated to human diseases [4, 5].
Indel detection, in particular, in homopolymer region
have a high positive rate [6, 7] which have to be lowered
for clinical applications [8, 9]. Thus the major challenge
in NGS regards the correct manipulation of output data
[10] assembling appropriate pipeline, including aligner
and variant caller. Diverse algorithms for alignment have
been compared in many studies [11, 12]. Caboche et al
[13] compared different mapping algorithms with Ion
Torrent data, in terms of computational requirement,
mapper robustness, ability to map reads in repeated
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regions and behavior with mutated reference genome.
They were able to optimize a benchmark procedure from
whole genome sequencing of small genomes, highlighting
the importance to evaluate mappers or to optimize pa-
rameters of a chosen mapper for a specific application.
Moreover, variant calling pipelines have been compared in
relation to different applications and platforms. Yeo et al.
[14] optimized an indel detection workflow for BRCA1/2
PGM sequencing panel. They compared the proprietary
software Torrent Suite and two open source variant cal-
lers, GATK and SAMtools. Their results showed that
SNV detection was less problematic than indel identifica-
tion using Torrent Suite. Moreover, they demonstrated
how the combination of BWA or TMAP mappers and
SAMtools is able to improve indel detection.
As demonstrated by these studies, the bioinformatic

challenge on NGS data and, in particular, Ion Torrent
data from targeted sequencing requires a lot of efforts in
order to correctly identify the best analysis pipeline.
GATK is a well-known toolbox for NGS data analysis.

Variant Quality Score Recalibration (VQSR) step gener-
ate an adaptive model based on metrics, such as strand
bias, from true variants. Thus it could be possible to cal-
culate if a variant is true or false. However, this step
could be used only for whole genome data or for dataset
including more than 30 exomes. For targeted gene
panels, GATK’s Best Practices suggest to set up hard fil-
ters specific for the study. In the present study, we com-
pared variant calling results of GATK pipeline including
the use of hard filtering, suggested by GATK’s Best Prac-
tices, and the proprietary Torrent Suite Variant Caller
regarding a custom panel including 11 genes. Then, we
focused on two simulated datasets (100 replicates for
each dataset), with high and low coverage, and then we
processed the raw variants called by GATK to set pa-
rameters of quality in order to increase the number of
true variants and decrease the number of false variants.

Methods
Real dataset
A dataset of 26 metastastic melanoma formalin-fixed
paraffin embedded (FFPE) samples was studied. Ex-
onic regions of a panel of 11 genes were sequenced
with Ion Torrent PGM. Sequencing data were ana-
lyzed using 2 standard pipelines including either the
Torrent Suite (TMAP 4.0.6 aligner and Torrent Vari-
ant Caller version 4.2-18 (TVC) with the parameters
“somatic” and “high stringency” switched on) or the
GATK suite for few variants (bwa aligner and GATK
programs; see GATK pipeline section for details).

Simulated datasets
The above reported panel of 11 genes was devised to
identify sequence variants in the coding regions. When

the present study was conceived we prepared a catalog
of known variants and their allele frequency using the
information from the real 26 sequenced individuals. The
simulation-based study was then set up using a reference
dataset of 26 individuals with randomly assigned variants
according to the catalog of known variants. The simu-
lated genotypic profiles of each individual were recorded.
For every sample it was prepared by simulation a file
(fasta format) containing the amplicon sequences that
were modified to introduce the assigned variants, re-
peated 2 times (since humans are diploids) in both the
forward and in the reverse sequence. The dataset of 26
fasta files was then processed with the ART simulator
[15] to generate files (FASTQ format) similar to those
produced by a sequencer of new generation, mimicking
its features and biases. For every sample the ART simu-
lator was launched twice under the hypothesis of a se-
quencing depth of 20x (low coverage, LC) and 100x
(high coverage, HC), respectively. The 26 files were then
processed using a standard pipeline for variant calling
that includes the aligner BWA and the GATK suite of
programs (see GATK pipeline section). All the still unfil-
tered variants were tagged as true (actually present in
the fasta file of the simulated subject) or false (not
present in the fasta file and therefore representing the
product of an erroneous call by the bioinformatic variant
calling process) variants. Thus one hundred independent
datasets of 26 individuals were simulated for a total of
5200 simulated samples. By this approach we tried to
simulate several times the most likely scenario (number
of samples per dataset, amplicons used, selected genes,
reported variants) resembling to the real one.

GATK pipeline
We followed the Toolkit for Genome Analysis (GATK,
https://software.broadinstitute.org/gatk/) [16] recommen-
dations of DNAseq best practices for calling variants.
Hence the following software were used: BWA-mem
(http://bio-bwa.sourceforge.net/) for sequence alignment
[17] and GATK 3.4 software for the later steps. In more
detail, sequences underwent the following steps: 1) align-
ment to the human genome reference version hg19, 2)
realignment around Indels, 3) base recalibration and 4)
variant discovery (using the haplotype caller function in
ERC mode) without been marked for duplicates.
The discovered variants were hard filtered after having

selected the rules to setup the filters from the classifica-
tion trees as described in the “Filters for the variant call-
ing” and “Classification trees” sections.

Filters for the variant calling
Hard filtering evaluated 7 standard GATK filters (Base-
QRankSum, ClippingRankSum, DP, MQ, GQ, MQRank-
Sum, ReadPosRankSum, see Additional file 1 for a
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description) and 3 filters (FS, ADT, ADTL) that were not
present in the standard GATK vcf output files. FS is the p
value from the contingency table of the number of reads call-
ing the alleles at the variant site on either the DNA strands
(forward and reverse). ADT and ADTL evaluate imbalances
in calling the reference and the alternative allele (ADT), also
depending on the amount of reads that map on the variant
locus (ADTL). ADTand ADTL are defined as follows:

ADT ¼ AD1−AD2ð Þj j
AD1þ AD2

ADTL ¼ log10 AD1þ AD2ð Þ�ADT

where AD1 and AD2 are the number of unfiltered reads
calling the reference and alternate allele, respectively.
Descriptive statistics were performed using R 3.2.3 and

the kruskal.test function, and ROCR library version 1.0-7.

Classification trees
Every filter was included into classification trees to
target the filter rules that better discriminate the
true variants (listed by GATK and also present in
the simulated sample) from false variants (proposed
by GATK but not present simulated in the sample
under examination). These rules have been then used
for the hard filtering. Eight classification trees were
generated to investigate separately SNV and INDEL,
homozygotes and heterozygotes (as shown by GATK)
under a simulated coverage of 20x or 100x. For
every tree we extracted the selected filters and their
threshold values in order to use them in the phase
of hard-filtering. We extracted the filters that were
listed starting from the root node of the classifica-
tion tree to the next 2 consecutive daughter nodes
(for a maximum of 7 filters). The filters selection for
each classification tree was made as follows. Com-
paring every daughter node with the root node we
targeted the nodes that 1) contained at least 10% of
the true calls and 2) where the ratio of the number
of true calls and false calls was greater than 3. To
minimize the number and complexity of the filter
rules we then considered for each targeted node l
(lower node) the upper connected node u (upper
node) closer to the root node. We then selected the
node u instead of the node l when 1) the node l
contained less than 80% of the true calls or 2) when
containing more than 70% of false calls of node u
(i.e. reduction of at least 30% of false calls), respect-
ively. Once the relevant nodes were selected we ex-
tracted the filter rules starting from the root node
toward each of the finally selected daughter nodes.
Classification trees were produced using the library

rpart (version 4.1-9) of the R package (version3.1.2)

Results
Results in the real dataset: GATK vs TVC
In the first part of this study we looked at the results ob-
tained using 2 different standard pipelines on the same
set of sequences. TVC is the software use for targeted
sequencing in bundle with the Ion Torrent sequencer.
GATK is considered the “gold standard” in managing
large NGS data (i.e. exomes and genomes) and can be
used for targeted sequencing. For this reason, we com-
pared TVC calls with those produced by GATK 3.4.
TVC called 399 variants in the entire dataset, 73 of
which were shared with GATK that detected 83 SNVs.
Then we performed the VCF files, which are the output
files of both TVC and GATK, focusing on some Parame-
ters Of sequencing Quality. In particular, DP (Coverage)
and AF (Allele Frequency) tags were shared by VCF out-
puts. TVC calls showed mean, DP and AF values of
1658.13 and 0.15, respectively. The 73 SNVs called by
both TVC and GATK showed higher mean. This obser-
vation could suggest that shared SNVs are true positive
calls, having higher coverage and quality by depth values.
It is noteworthy that mean POQ values of the variants
called only by GATK were similar to TVC calls (DP:
1795.33; AF: 0.16). SNVs identified only by TVC showed
lower mean DP and AF values than shared variations
(663.75, 0.08, respectively). Such results suggest that
SNVs called by TVC may be enriched of many false pos-
itives. Indel calling is a highly debated problem when we
refer to Ion Torrent data. In a very preliminary way, we
evaluated mean DP and AF values of 107 Indels identi-
fied by GATK, which displayed similar values to those of
shared SNVs (3814.58, 0.16, respectively). No indel was
detected by TVC.

High-coverage and low-coverage simulated datasets: de-
scriptive statistics
To better explore GATK variant calling and to try to
tune the hard filtering parameters (filters), we performed
a simulation-based study, as described in the “Methods”
section. In the High-Coverage (HC) dataset, GATK iden-
tified 91115 unfiltered SNVs and 81640 unfiltered Indels.
It is noteworthy that 98.49% and only 21.23% of SNVs
and Indels were true variants, respectively. In the Low-
Coverage (LC) dataset, 113246 and 88145 unfiltered
SNVs and unfiltered Indels were respectively called. As
expected, we found that the percentage of true variants
was lower in the LC dataset (84.95% for SNVs and 8.68%
for Indels) (Table 1).
We observed that 3.9% of SNVs and 53.8% of Indels

were homozygous in the HC dataset whereas 14.8% of
SNVs and 51.9% of Indels were homozygous in the LC
dataset.
We investigated the distribution of the values of the

individual GATK filters, namely BaseQRankSum,

The Author(s) BMC Bioinformatics 2017, 18(Suppl 5):119 Page 59 of 65



ReadPosRankSum, ClippingRankSum, DP, MQ, MQRank-
Sum, and GQ (see Additional file 1 for details) between
true and false variants. Table 2 reports the descriptive sta-
tistics for the HC dataset and shows that BaseQRankSum,
ReadPosRankSum and DP display a statistically significant
difference both in SNVs and Indels. MQRS showed a sta-
tistically significant difference in Indels only.
Table 3 reports the descriptive statistics for the LC

dataset and shows a statistically significant difference for
all the GATK filters with the exception of MQ both in
SNVs and Indels subsets. Of note that GQ always (= the
median value of each of the 100 replicates) presented a
value equal to 99 for the true variants. It is intriguing
that in the case of SNV subset, DP presents the lowest
values in the TVs compared to FVs even the difference is
relatively small.
The performance of all individual filters to discrimin-

ate between true and false variants was summarized by
estimating the area under the ROC curve (AUC). Table 4
reports that ADT and GQ showed the best performance.
Additionally every filter showed a better performance for
SNVs rather than Indels (Additional file 2).
It could be noticed that correctly called alterations

showed a higher coverage than false variants, highlight-
ing the importance of this parameter.

Classification trees
We performed the analyses of either SNVs or Indels
subsets stratified by genotype, in HC and LC datasets.
Classification trees (Additional file 3) allowed to set a
series of filter rules for each of the 2 type of sequence al-
teration. Table 5 shows the parameters and threshold
values to be used for hard-filtering been extracted from
the classification trees.
Notably, the classification tree did not select any reli-

able filter for homozygous Indels in the LC dataset
(Table 6).
We then explored the sequence of the flanking regions

of each type of alterations, in particular we observed that
short homopolymeric strings are recurrent and therefore
partly responsible for false positive calls (Table 7, Add-
itional file 3).

Discussion
It is well known that there are many technical challenges
involved in getting an accurate variant calling procedure
of NGS data including the bioinformatic analysis. A
number of tools based on complex statistical models has
been developed but many concerns related to their per-
formance remain still open. Since the number of the
called variants varies from software to software, typically
more than one computer program is then used. If the
variant is actually called by all the programs then its
support increases. However, the problem occurs when
the variant is called only by some programs, raising the
suspicion that it is not true. NGS is now applied in many
fields. We were interested in studying the case of tar-
geted sequencing of small set of genes when using a
common NGS platform such as Ion Torrent. When ana-
lyzing a few variants (as in the case of a panel of genes
rather than an exome) the GATK guides suggest to use
filters that must be set by the user (hard-filtering) rather
than the adaptive filtering that needs a high number of
variants to work properly. Under these conditions

Table 1 Overall GATK unfiltered alterations identified in HC and
LC dataset (100 replicates of a dataset of 26 individuals and 11
genes)

TV FV

HC dataset

Indels 17,359 64,281

SNVs 89,743 1,372

LC dataset

Indels 7,656 80,489

SNVs 96,203 17,043

TV true variants, FV false variants

Table 2 Descriptive statistics of GATK filters in the HC dataset, stratifying calls by type (SNV/Indels). Data are displayed as mean ± sd

SNVs Indels

TV
mean ± sd

FV
mean ± sd

p-value TV
mean ± sd

FV
mean ± sd

p-value

BQRS 0.11 ± 0.03 -0.6 ± 0.5 <0.0001 0.28 ± 0.12 0.15 ± 0.05 <0.0001

RPRS -0.067 ± 0.05 0.05 ± 0.4 0.0009 -0.74 ± 0.22 0.23 ± 0.05 <0.0001

CRS 0.0007 ± 0.02 -0.009 ± 0.29 0.72 0.001 ± 0.07 0.007 ± 0.03 0.6

DP 96.61 ± 0.58 49.25 ± 5.06 <0.0001 109.4 ± 9.57 96.01 ± 0.1 <0.0001

MQ 60 ± 0 59.99 ± 0.07 - 60 ± 0 60 ± 0 -

MQRS -0.03 ± 0.02 -0.05 ± 0.28 0.3 -0.02 ± 0.09 -0.21 ± 0.04 <0.0001

GQ 99 ± 0 79.15 ± 12.06 - 99 ± 0 73.16 ± 2.7 -

The mean value is the mean value of the median value from each of the 100 replicates
BQRS BaseQRankSum, RPRS ReadPosRankSum, CRS ClippingRankSum, DP depth of coverage, MQ MappingQuality, MQRS MappingQualityRankSum, GQ genotype
quality, TV true variants, FV false variants
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(which are very common since many laboratories devel-
oped their own panel of specific genes to study the associ-
ation with a specific phenotype) it becomes important to
tailor the filters to call the true variants on the specific de-
sign. It is likely that different panels of genes and even dif-
ferent designs for the same panel of genes require a
different setup of filters. We therefore tried to explore
through a simulation-based study the outcomes that the
pipeline for the variant calling may encounter. We were
interested in the study of a specific scenario made up a
group of individuals with a specific sequencing design. We
measured the performance inthe calling true variants for
each of the filters that can be set when working with hard-
filtering. Hence we used classification trees on a large data
simulated dataset of true and false variants.
In the present paper, we studied several standard

and non standard GATK filters to be used for hard-
filtering in the context of a targeted gene panel se-
quencing. Firstly, we analyzed a real dataset coming
from the sequencing of an Ion Torrent targeted gene
panel observing a high discrepancy between TVC and
GATK, particularly for Indels, suggesting that such
type variants are even difficult to be detected by the
present bionformatic tools. In fact the importance to
define a “gold standard” dataset to test variant calling
methods is a very hot topic. Recently, “synthetic”
matched tumor/normal samples was created for com-
paring performances of popular variant callers in de-
tection of “somatic” SNVs. However, even if they had
the advantage to refer to NIST-GIAB [18] as gold
standard, authors could not discriminate “somatic”
SNVs from germline background, an important issue
when studying tumors, and moreover the batch that
they purchased was not the same used for NIST-
GIAB [19]. In the present study, we decided to simu-
late two datasets, each with a different coverage and
carrying alterations found in real data. Notwithstand-
ing this investigation did not simulate tumor

Table 3 Descriptive statistics of GATK filters in the LC dataset, stratifying calls by type (SNV/Indels). Data are displayed as mean ± sd

SNVs Indels

TV
mean ± sd

FV
mean ± sd

p-value TV
mean ± sd

FV
mean ± sd

p-value

BQRS 0.02 ± 0.02 -0.27 ± 0.12 <0.0001 0.16 ± 0.16 0.01 ± 0.03 <0.0001

RPRS -0.19 ± 0.03 -0.31 ± 1.1 <0.0001 -1.29 ± 0.3 0.04 ± 0.04 <0.0001

CRS -0.02 ± 0.02 -0.05 ± 0.07 <0.0001 -0.004 ± 0.12 -0.04 ± 0.01 0.001

DP 19.97 ± 0.17 22.72 ± 1.3 <0.0001 21.83 ± 1.97 20.24 ± 0.42 <0.0001

MQ 60 ± 0 60 ± 0 - 60 ± 0 60 ± 0 -

MQRS -0.06 ± 0.01 -0.1 ± 0.08 <0.0001 -0.15 ± 0.15 -0.1 ± 0.04 0.03

GQ 99 ± 0 20.04 ± 2.9 - 99 ± 0 17.94 ± 0.92 -

The mean value is the mean value of the median value from each of the 100 replicates
BQRS BaseQRankSum, RPRS ReadPosRankSum, CRS ClippingRankSum, DP depth of coverage, MQ MappingQuality, MQRS MappingQualityRankSum, GQ genotype
quality, TV true

Table 4 Perfomance of the individual filters evaluated to
discriminate between true and false variants by the AUC values
from ROC curve, grouped by type of variants (SNV or Indel) and
status of the genotype call (homozygote or heterozygote)
according to the depth of sequencing (LC or HC dataset)

SNV Indel

Homo Het Homo Het

HC dataset

BQRS 0.73 0.53 0.5 0.53

RPRS 0.57 0.61 0.52 0.68

CRS 0.5 0.51 0.53 0.5

DP 0.79 0.8 0.76 0.6

MQ 0.55 0.5 0.6 0.63

MQRS 0.52 0.53 0.58 0.58

GQ 0.65 0.95 0.77 0.77

ADT 0.96 0.8 0.56 0.94

ADTL 0.8 0.77 0.72 0.94

FS 0.51 0.62 0.51 0.54

LC dataset

BQRS 0.58 0.65 0.5 0.52

RPRS 0.53 0.5 0.54 0.74

CRS 0.52 0.5 0.51 0.51

DP 0.63 0.67 0.52 0.62

MQ 0.51 0.54 0.54 0.52

MQRS 0.52 0.52 0.51 0.5

GQ 0.79 0.99 0.53 0.97

ADT 0.98 0.99 0.5 0.92

ADTL 0.67 0.98 0.54 0.98

FS 0.5 0.54 0.5 0.54
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Table 5 Parameters and their thresholds selected by regression trees

Sequencing depth Variant type Genotype by GATK Filter rule

20x SNV homozygous ADT > =0.98

20x SNV heterozygous ADT < 0.55

20x INDEL homozygous N/A (*)

20x INDEL heterozygous ADT < 0.26 & GQ > =98.5 & DP > =23.5 & MQ > =59.5
ADT < 0.26 & DP > 23.5 & ReadPosRankSum < -1.55

100x SNV homozygous ADT > =0.96

100x SNV heterozygous GQ > =68.5

100x INDEL homozygous ADTL > =5.08

100x INDEL heterozygous ADT < 0.15 & MQ > =59.91 & GQ > =98.5

(*): no reliable filters were selected by classification trees

Table 6 Results by the application of selection parameters and their thresholds on simulated datasets

TV
N (%)

FV
N (%)

Variant selected by hard filtering %

HC dataset

Homo SNVs

Overall 2,382 (66.6) 1,195 (33.4) 93.9

Selected 2,238 (98.6) 31 (1.3)

Het SNVs

Overall 87,361 (99.8) 177 (0.2) 98.6

Selected 86,166 (99.9) 24 (0.03)

Homo indels

Overall 54 (0.12) 43,871 (99.8) 27.7

Selected 15 (75) 5 (25)

Het indels

Overall 17.305 (45.8) 20,410 (54.1) 84.6

Selected 14,646 (94) 935 (6)

LC dataset

Homo SNVs

Overall 2,084 (12.38) 14,721 (87.6) 96.9

Selected 2,020 (92.2) 171 (7.8)

Het SNVs

Overall 95,119 (97.6) 2,322 (2.3) 99.4

Selected 94,602 (99.9) 80 (0.08)

Homo indels

Overall 154 (0.4) 45623 (99.6) 100

Selected 154 (0.4) 45623 (99.6)

Het indels

Overall 7,502 (17.6) 34,889 (82.3) 43

Selected 3,226 (99.1) 27 (0.8)

% have to be intended as the percentage of unfiltered variants for “overall”calls and as the percentage of alterations which were not filtered out in the hard
filtering process for “selected”calls; % of selection indicates the amount of variants selected from the total callset. TV true variants, FV false variants
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heterogeneity, GATK variant calling was tested both
in a relative high coverage and low coverage
conditions.
Recently, Vanni et al [20] highlighted the discrep-

ancy between TVC and GATK, which was also ob-
served in our study, excluding indel calls from
comparison. They considered Phred score ranging 5–
30 to mark low-quality variants. Our results show
that such approach could not be enough to have a
high quality GATK call set. In detail, we evidenced
that different parameters could be tuned depending
on type of mutations and genotypes suggested. In a
previous study, authors focused on the detection of
parameters that could allow to improve indel detec-
tion [7]. They focused on two parameters regarding
the frequency of reference and alternate alleles and
the variance of the width of inserted/deleted se-
quences. The first parameters is similar to our ADT
and ADTL filters, which were involved in the step of
selection for the reduction of false positives. They ob-
served that the numbers of false positive regarded in
particular indel in homopolymeric regions. In a simi-
lar way we observed that flanking regions, were ho-
mopolymeric in a high number of false positive calls.
It is important to reduce errors in these regions be-
cause they occur in genomic regions where the occur-
rence of true alterations is also higher [21]. Variant

calling of TVC is improving but Indels are still a
problem and thus parallel pipeline with opportune set
up and filters could be helpful to solve this question,
with particular attention on type of platform used for
sequencing and on type of design (e.g., exome, tar-
geted gene panel). Carson et al [22] recently demon-
strated how DP and GQ filters could be able to
enhance sensitivity and specificity in whole exome se-
quencing data. They tested different thresholds and
showed that over a certain threshold accuracy reached
a plateau and notably they demonstrated that VQSR
is not enough to improve variant calling. Indeed, they
concluded that, also when VQSR could be applied,
opportune hard filtering strategies need to be set up.
Our intent was not to target the precise hard filter
parameter values and our results have to be intended
as suggestion in handling data coming from targeted
gene panel sequencing in order to optimize GATK
variant calling outputs.
We observed that hard filtering was able to reduce the

number of unfiltered false positives, with a different effi-
ciency between SNVs (higher) and Indels (lower). True
Indels were hard to be filtered and the performance of
filtering was generally lower than in the case of the
SNVs (i.e. high loss of true variants and high abundance
of false variants; see Table 6). We also observed that the
very majority to the unfiltered Indels called at the homo-
zygous status is represented by false variants. Hence
there are some regions of the DNA reference sequence
that are prone to be recognized as carrying Indels by the
bioinformatic pipeline. Our preliminary investigations
show that these regions often contain low complexity se-
quences (for instance a short sequence made up of the
same base). A good strategy would be to train in ad-
vance the program that operates in the indel parameter
recalibration phase to recognize these regions but this
hypothesis needs to be investigated in more detail. The
reader should note that even if some NGS technologies
are known to read with difficulty the DNA regions hav-
ing low complexity, we are here asserting that the call
errors of the variants in the low complexity regions are
due to the bioinformatic analysis and not to sequencing
errors as we worked with data produced by the simula-
tor and not by a NGS sequencer. So, in the real world,
regions with low complexity sequences are doubly con-
demned to possible abundant errors due to both sequen-
cing and the following bioinformatics analysis.
Some results were quite different from the expected.

In particular, we observed that they were detected (unfil-
tered and then filtered) more SNVs in the case of low
coverage (see Table 6, Het SNVs) than in high coverage.
Of note that in such cases the rate of false variant is very
small even for the unfiltered variants. However, the rate
of false variant is about 10 folds greater in the LC

Table 7 Homopolymeric sequences flanking false positive
variants

Chr Position Flanking sequence N° of occurrences

HC dataset

Homo SNVs chr10 131565164 CCGGTTGGGGA 77

chr3 178921420 GGACTGTTTTT 73

Het SNVs chr13 48919347 TAAACATTTTA 63

chr3 178937372 CTTGGTAAAAG 9

Homo Indels chr4 55602995 AGAGCCAAAAA 1842

chr10 89693016 AAGTTATTTTT 1802

Het Indels chr13 48955363 AGTTACTTTTT 2175

chr3 178941853 CTATCCTTTTT 1678

LC dataset

Homo SNVs chr2 204736165 GGGTTGTTTTT 334

chr13 48954225 GGTAAATTTTT 241

Het SNVs chr7 140534584 AAACAGAAAAA 32

chr13 48955464 CTTTGATTTTT 20

Homo Indels chr7 140481508 AACAGTAAAAA 1153

chr7 140481513 TAAAAAAGTCA 1084

Het Indels chr3 69915434 TAAAGGAAAAA 1202

chr10 89693016 AAGTTATTTTT 1107

Variant locus is on the 6th nucletide (bold) of the 11 nucleotide string
(flanking sequence)
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dataset. Therefore we hypothesize that variant calling
process is more sensitive because of less specific when
analyzing dataset with a low coverage.
In general terms, as already known, the Indels are

more difficult to be analyzed than the SNVs and a dee-
per sequencing helps to improve the performance of fil-
tering the true variants. However, such a performance
could vary since complexity of the sequence changes
along the sequence itself. In the case of targeted sequen-
cing, our suggestion is to study in advance the region
that we will be sequenced in order to evaluate the per-
formance of the variant calling procedure over such re-
gions in order to figure out the most problematic areas
to be treated with caution. We also suggest the use of
simulations based on the specific target region which
can help to calibrate the filters for the specific problem.
We argue that it could be useful to set specific filters for
different regions and for different known variants.

Conclusions
The results of our study showed that filters could be
correctly tuned according to coverage and type of alter-
ations. Moreover, it could be useful to test by appropri-
ate simulations the design of amplicon gene panels to
gain a priori knowledge of the possible issues in variant
calling by GATK.
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