483 research outputs found

    Optical solar sail degradation modelling

    Get PDF
    We propose a simple parametric OSSD model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails

    Predicted aircraft effects on stratospheric ozone

    Get PDF
    The possibility that the current fleet of subsonic aircraft may already have caused detectable changes in both the troposphere and stratosphere has raised concerns about the impact of such operations on stratospheric ozone and climate. Recent interest in the operation of supersonic aircraft in the lower stratosphere has heightened such concerns. Previous assessments of impacts from proposed supersonic aircraft were based mostly on one-dimensional model results although a limited number of multidimensional models were used. In the past 15 years, our understanding of the processes that control the atmospheric concentrations of trace gases has changed dramatically. This better understanding was achieved through accumulation of kinetic data and field observations as well as development of new models. It would be beneficial to start examining the impact of subsonic aircraft to identify opportunities to study and validate the mechanisms that were proposed to explain the ozone responses. The two major concerns are the potential for a decrease in the column abundance of ozone leading to an increase in ultraviolet radiation at the ground, and redistribution of ozone in the lower stratosphere and upper troposphere leading to changes in the Earth's climate. Two-dimensional models were used extensively for ozone assessment studies, with a focus on responses to chlorine perturbations. There are problems specific to the aircraft issues that are not adequately addressed by the current models. This chapter reviews the current status of the research on aircraft impact on ozone with emphasis on immediate model improvements necessary for extending our understanding. The discussion will be limited to current and projected commercial aircraft that are equipped with air-breathing engines using conventional jet fuel. The impacts are discussed in terms of the anticipated fuel use at cruise altitude

    Chromatin structure and evolution in the human genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Evolutionary rates are not constant across the human genome but genes in close proximity have been shown to experience similar levels of divergence and selection. The higher-order organisation of chromosomes has often been invoked to explain such phenomena but previously there has been insufficient data on chromosome structure to investigate this rigorously. Using the results of a recent genome-wide analysis of open and closed human chromatin structures we have investigated the global association between divergence, selection and chromatin structure for the first time.</p> <p>Results</p> <p>In this study we have shown that, paradoxically, synonymous site divergence (dS) at non-CpG sites is highest in regions of open chromatin, primarily as a result of an increased number of transitions, while the rates of other traditional measures of mutation (intergenic, intronic and ancient repeat divergence as well as SNP density) are highest in closed regions of the genome. Analysis of human-chimpanzee divergence across intron-exon boundaries indicates that although genes in relatively open chromatin generally display little selection at their synonymous sites, those in closed regions show markedly lower divergence at their fourfold degenerate sites than in neighbouring introns and intergenic regions. Exclusion of known Exonic Splice Enhancer hexamers has little affect on the divergence observed at fourfold degenerate sites across chromatin categories; however, we show that closed chromatin is enriched with certain classes of ncRNA genes whose RNA secondary structure may be particularly important.</p> <p>Conclusion</p> <p>We conclude that, overall, non-CpG mutation rates are lowest in open regions of the genome and that regions of the genome with a closed chromatin structure have the highest background mutation rate. This might reflect lower rates of DNA damage or enhanced DNA repair processes in regions of open chromatin. Our results also indicate that dS is a poor measure of mutation rates, particularly when used in closed regions of the genome, as genes in closed regions generally display relatively strong levels of selection at their synonymous sites.</p

    Fur : A non-invasive approach to monitor metal exposure in bats

    Get PDF
    This paper presents a novel assessment of the use of fur as a non-invasive proxy to biomonitor metal contamination in insectivorous bats. Concentrations of metals (cadmium, copper, lead and zinc) were measured using ICP-MS in tissues (kidneys, liver, stomach and stomach content, bones and fur) obtained from 193 Pipistrellus pipistrellus/pygmaeus bats. The bats were collected across a gradient of metal pollution in England and Wales. The utility of small samples of fur as an indicator of metal exposure from the environment was demonstrated with strong relationships obtained between the concentrations of non-essential metals in fur with concentrations in stomach content, kidneys, liver and bones. Stronger relationships were observed for non-essential metals than for essential metals. Fur analyses might therefore be a useful non-invasive proxy for understanding recent, as well as long term and chronic, metal exposure of live animals. The use of fur may provide valuable information on the level of endogenous metal exposure and contamination of bat populations and communities

    Insight into structure: function relationships in a molecular spin-crossover crystal, from a related weakly cooperative compound

    Get PDF
    This is a repository copy of Insight into structure: function relationships in a molecular spin-crossover crystal, from a related weakly cooperative compound. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/83008/ Version: Accepted Version Article: ElhaĂŻk, J, Kilner, C and Halcrow, MA (2014) Insight into structure: function relationships in a molecular spin-crossover crystal, from a related weakly cooperative compound. European Journal of Inorganic Chemistry, 2014 (26). 4250 -4253. ISSN 14344250 -4253. ISSN -1948 https://doi.org/10.1002/ejic.201402623 [email protected] https://eprints.whiterose.ac.uk/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version -refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher&apos;s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. Insight into Compound JĂŠrĂ´me ElhaĂŻk, [a] Colin A. Kilner, [a] and Malcolm A. Halcrow* [a] Abstract: The ClO4 − salt of [FeL2] 2+ (L = 2,6-bis(3-methylpyrazol-1-yl)pyridine) undergoes very gradual thermal spin-crossover centered just below room temperature. In contrast, the BF4 − salt of the same complex exhibits an abrupt and structured spin-transition at lower temperature, with a complicated structural chemistry. The difference can be attributed to a much larger change in molecular structure between the spin states of the complex in the more cooperative BF4 − salt, leading to an increased kinetic barrier for their interconversion. Consistent with that suggestion, the high-spin and low-spin structures of weakly cooperative [FeL2][ClO4]2 are almost superimposable. The continuing interest in thermally and optically switchable spin-crossover (SCO) materials [9] Its thermal spin-transition takes place in two steps, via a re-entrant symmetry-breaking transition to an intermediate crystal phase, with a tripled unit cell containing a mixture of high-spin and low-spin sites. The first of these steps occurs abruptly with hysteresis, but at a temperature that varies according to the water content of the sample (x). In contrast the second step is kinetically slow, and is only achieved when the sample is poised at 100 K for 1.5 hrs. [10] Its excited spin-state trapping (LIESST [11] ) behavior is also unique, in that its thermodynamic high low spin transition and kinetically controlled high low spin-state relaxation exhibit different profiles and are effectively decoupled from each other. [12] Although unexceptional in itself, 1[ClO4]2 provides useful insight into the structural origin of the unusual behavior of the BF4 − salt by providing a rare comparison between strongly and weakly cooperative spin-crossover materials based on the same complex molecule. At 300 K, MT for 1[ClO4]2 is 2.4 cm 3 mol -1 K, lower than expected for a high-spin iron(II) complex with this ligand type (3.4-3.6 cm 3 mol -1 K)

    Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin

    Get PDF
    BACKGROUND: The sterile insect technique (SIT) has been used with success for suppressing or eliminating important insect pests of agricultural or veterinary importance. In order to develop SIT for mosquitoes, female elimination prior to release is essential as they are the disease-transmitting sex. A genetic sexing strain (GSS) of Anopheles arabiensis was created based on resistance to dieldrin, and methods of sex separation at the egg stage were developed. The use of this strain for SIT will require sexually sterile males: useful radiation doses for this purpose were determined for pupae and adults. METHODS: For the creation of the sexing strain, dieldrin-resistant males were irradiated with 40 Gy using a (60)Co source and were subsequently crossed to homozygous susceptible virgin females. Individual families were screened for semi-sterility and for male resistance to dieldrin. For sex separation, eggs of a resulting GSS, ANO IPCL1, were exposed to varying concentrations of dieldrin for different durations. Percent hatch, larval survival, and male and female emergence were recorded. Radiation induced sterility was determined following adult and pupa exposure to gamma rays at 0–105 Gy. Mortality induced by dieldrin treatment, and levels of sterility post radiation were investigated. RESULTS: ANO IPCL1 contains a complex chromosome aberration that pseudo-links the male-determining Y chromosome and dieldrin resistance, conferring high natural semi-sterility. Exposure of eggs to 2, 3, and 4 ppm dieldrin solutions resulted in complete female elimination without a significant decrease of male emergence compared to the controls. A dose of 75 Gy reduced the fertility to 3.8 and 6.9% when males were irradiated as pupae or adults respectively, but the proportions of progeny of these males reaching adulthood were 0.6 and 1.5% respectively CONCLUSION: The GSS ANO IPCL1 was shown to be a suitable strain for further testing for SIT though high semi-sterility is a disadvantage for mass rearing

    Potential effects of optical solar sail degredation on trajectory design

    Get PDF
    The optical properties of the thin metalized polymer films that are projected for solar sails are assumed to be affected by the erosive effects of the space environment. Their degradation behavior in the real space environment, however, is to a considerable degree indefinite, because initial ground test results are controversial and relevant inspace tests have not been made so far. The standard optical solar sail models that are currently used for trajectory design do not take optical degradation into account, hence its potential effects on trajectory design have not been investigated so far. Nevertheless, optical degradation is important for high-fidelity solar sail mission design, because it decreases both the magnitude of the solar radiation pressure force acting on the sail and also the sail control authority. Therefore, we propose a simple parametric optical solar sail degradation model that describes the variation of the sail film's optical coefficients with time, depending on the sail film's environmental history, i.e., the radiation dose. The primary intention of our model is not to describe the exact behavior of specific film-coating combinations in the real space environment, but to provide a more general parametric framework for describing the general optical degradation behavior of solar sails. Using our model, the effects of different optical degradation behaviors on trajectory design are investigated for various exemplary missions

    Spatial and temporal distribution of the malaria mosquito Anopheles arabiensis in northern Sudan: influence of environmental factors and implications for vector control

    Get PDF
    BACKGROUND: Malaria is an important public health problem in northern Sudan, but little is known about the dynamics of its transmission. Given the characteristic low densities of Anopheles arabiensis and the difficult terrain in this area, future vector control strategies are likely to be based on area-wide integrated pest management (AW-IPM) that may include the sterile insect technique (SIT). To support the planning and implementation of future AW-IPM activities, larval surveys were carried out to provide key data on spatial and seasonal dynamics of local vector populations. METHODS: Monthly cross-sectional larval surveys were carried out between March 2005 and May 2007 in two localities (Dongola and Merowe) adjacent to the river Nile. A stratified random sampling strategy based on the use of Remote Sensing (RS), Geographical Information Systems (GIS) and the Global Positioning System (GPS) was used to select survey locations. Breeding sites were mapped using GPS and data on larval density and breeding site characteristics were recorded using handheld computers. Bivariate and multivariate logistic regression models were used to identify breeding site characteristics associated with increased risk of presence of larvae. Seasonal patterns in the proportion of breeding sites positive for larvae were compared visually to contemporaneous data on climate and river height. RESULTS: Of a total of 3,349 aquatic habitats sampled, 321 (9.6%) contained An. arabiensis larvae. The frequency with which larvae were found varied markedly by habitat type. Although most positive sites were associated with temporary standing water around the margins of the main Nile channel, larvae were also found at brickworks and in areas of leaking pipes and canals - often far from the river. Close to the Nile channel, a distinct seasonal pattern in larval populations was evident and appeared to be linked to the rise and fall of the river level. These patterns were not evident in vector populations breeding in artificial water sources away from the river. CONCLUSION: The GIS-based survey strategy developed in this study provides key data on the population dynamics of An. arabiensis in Northern State. Quantitative estimates of the contributions of various habitat types and their proximity to settlements provide a basis for planning a strategy for reducing malaria risk by elimination of the vector population

    Realistic Earth escape strategies for solar sailing

    Get PDF
    With growing interest in solar sailing comes the requirement to provide a basis for future detailed planetary escape mission analysis by drawing together prior work, clarifying and explaining previously anomalies. Previously unexplained seasonal variations in sail escape times from Earth orbit are explained analytically and corroborated within a numerical trajectory model. Blended-sail control algorithms, explicitly independent of time, which providenear-optimal escape trajectories and maintain a safe minimum altitude and which are suitable as a potential autonomous onboard controller, are then presented. These algorithms are investigated from a range of initial conditions and are shown to maintain the optimality previously demonstrated by the use of a single-energy gain control law but without the risk of planetary collision. Finally, it is shown that the minimum sail characteristic acceleration required for escape from a polar orbit without traversing the Earth shadow cone increases exponentially as initial altitude is decreased
    • …
    corecore