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POTENTIAL EFFECTS OF OPTICAL SOLAR SAIL
DEGRADATION ON TRAJECTORY DESIGN
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The optical properties of the thin metalized polymer films that are projected for solar

sails are assumed to be affected by the erosive effects of the space environment. Their

degradation behavior in the real space environment, however, is to a considerable

degree indefinite, because initial ground test results are controversial and relevant in-

space tests have not been made so far. The standard optical solar sail models that are

currently used for trajectory design do not take optical degradation into account, hence

its potential effects on trajectory design have not been investigated so far. Nevertheless,

optical degradation is important for high-fidelity solar sail mission design, because

it decreases both the magnitude of the solar radiation pressure force acting on the

sail and also the sail control authority. Therefore, we propose a simple parametric

optical solar sail degradation model that describes the variation of the sail film’s optical

coefficients with time, depending on the sail film’s environmental history, i.e., the

radiation dose. The primary intention of our model is not to describe the exact behavior

of specific film-coating combinations in the real space environment, but to provide

a more general parametric framework for describing the general optical degradation

behavior of solar sails. Using our model, the effects of different optical degradation

behaviors on trajectory design are investigated for various exemplary missions.
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INTRODUCTION

The objective of this paper is to establish a parametric model for optical solar sail degradation
and to describe its effects on trajectory design. Solar sails require large highly reflective ultra-
lightweight surfaces. The optical and mechanical properties of the thin metalized polymer films
that are projected for solar sails are assumed to be affected by the erosive effects of the space
environment. Optical solar sail degradation (OSSD) should be considered for a thorough solar sail
mission analysis because it decreases not only the magnitude of the solar radiation pressure (SRP)
force acting on the sail but also the sail control authority, because it reduces the magnitude of the
SRP force component perpendicular to the sun-sail direction. Mechanical solar sail degradation
(MSSD) should be considered in the solar sail design process, because it decreases the tensile
strength of the sail film and is likely to affect the sail performance. MSSD, however, is not
considered within this paper because its consequences depend on the actual mechanical strain in
the sail film and, therefore, on the actual solar sail design.

Although much ground and space testing has been done to measure the optical degradation of
metalized polymer films as second surface mirrors (metalized on the back side), to our knowledge,
no systematic testing to measure the optical degradation of candidate solar sail films (metalized
on the front side) on ground or in space has been reported so far, so that the optical degradation
behavior (and therefore the degradation behavior of the propulsive capability) of solar sails in
the real space environment is to a considerable degree indefinite. Nevertheless, solar sail mission
designers necessitate an OSSD model to estimate the potential effects of OSSD on their missions.

The standard optical solar sail model is the non-perfectly reflecting sail model∗, as it is described,
e.g., in Refs. 1, 2, or 3. Based on this model, Rios-Reyes and Scheeres developed a generalized sail
model for non-flat solar sails, which allows one to model also local variations of the optical sail
properties [4]. Both models do not take OSSD into account. Therefore, the authors of this paper
established in November 2004 a “Solar Sail Degradation Model Working Group” (SSDMWG) with
the aim to make the next step towards a realistic high-fidelity optical solar sail model by elaborating
a parametric model for OSSD. Our OSSD model describes the variation of the sail film’s optical
coefficients with time, depending on the sail film’s environmental history, i.e., the radiation dose.
The primary intention of this model is not to describe the exact behavior of specific film-coating
combinations in the real space environment, but to provide a more general parametric framework
for the general optical degradation behavior of solar sails. It should later be refined, when results
from ground and in-space tests have become available. Until then, our model can be used to
investigate the effects of different potential degradation behaviors on various mission aspects, e.g.
trajectory optimization and attitude control, by varying the OSSD model parameters.

The paper is organized as follows. First, the SRP force models for non-perfectly reflecting solar
sails are briefly reviewed. Then, a parametric OSSD model is proposed that describes the variation
of the sail film’s optical coefficients with time, depending on the sail film’s environmental history,
i.e., the radiation dose. This model is then used to estimate the effects of OSSD on trajectory
design for five exemplary missions: a Mars rendezvous, a Mercury rendezvous, a fast Neptune
flyby, a fast transfer to the heliopause (200AU), and, finally, for artificial Lagrange-point missions.

THE NON-PERFECTLY REFLECTING SOLAR SAIL

For the description of the solar radiation pressure (SRP) force exerted on a solar sail, it is convenient
to introduce two unit vectors. The first one is the sail normal vector n, which is perpendicular
to the sail surface and always directed away from the sun. In the orbit frame† O3, its direction,

∗ Most work on solar sails has been done using even simpler models.
† O3 = {er, et, eh} is an orthogonal right-handed polar coordinate frame. er points always along the sun-spacecraft

line, eh is the orbit plane normal (pointing along the spacecraft’s orbital angular momentum vector), and et completes
the right-handed coordinate system (er × et = eh).
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which describes the sail attitude, is expressed by the pitch angle α and the clock angle δ (Fig. 1).
The second unit vector is the thrust unit vector m, which points along the direction of the SRP
force. Its direction is described likewise by the cone angle θ and the clock angle δ.
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Figure 1 Definition of the sail normal vector and the thrust normal vector

At a distance r from the sun, the SRP is

P =
S0

c

(r0
r

)2

= P0 ·
(r0
r

)2

= 4.563
µN
m2

·
(r0
r

)2

(1)

where S0 = 1368W/m2 is the solar constant, c is the speed of light in vacuum, and r0 is 1
astronomical unit (1 AU).

Different levels of simplification for the optical characteristics of a solar sail result in different
models for the magnitude and direction of the SRP force acting on the sail. The most simple model
assumes an ideally reflecting sail surface. It will here be denoted as model IR (ideal reflection). It
can be easily derived (see e.g. Ref. 3 pp. 38-39 and also Fig. 2.1) that the SRP force exerted on
an ideal sail is

F SRP = 2PA cosα cosαn (2)

(note that one cosα results from the projection of the sail area onto er, whereas the other cosα
results from the projection of the two SRP force components onto n). Thus, for model IR, the
SRP force is always along the direction of the sail normal vector, m ≡ n.

The Non-Perfectly Reflecting Solar Sail Model

For a thorough trajectory design, a more sophisticated SRP force model than IR must be employed,
which takes into account the optical coefficients of the real sail film. This model will here be denoted
as model NPR (non-perfect reflection). It was proposed in the 1970s for solar sail trajectory
optimization by Sauer [5] and further studied by Forward [1], but found little application until
recently [6–10].

Optical Solar Sail Coefficients

In model NPR, the optical characteristics of the sail film are parameterized by the absorption coeffi-
cient a, the reflection coefficient ρ, the transmission coefficient τ , and the emission coefficient ε, with
the constraint a+ρ+ τ = 1. Assuming τ = 0 for the reflecting side of the solar sail, the absorption
coefficient is a = 1−ρ. Because not all photons are reflected specularly, the reflection coefficient can
be further divided into a specular reflection coefficient ρs, a diffuse reflection coefficient ρd, and a
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Figure 2 SRP force

back reflection coefficient ρb, with the constraint ρs+ρd+ρb = ρ. Assuming ρb = 0, this can also be
expressed by introducing a specular reflection factor s, so that s = ρs/ρ⇔ ρs = sρ⇒ ρd = (1−s)ρ.
The emission coefficient ε describes the power W that is emitted from a surface of area A at ab-
solute temperature T , W = AεσT 4, where σ = 5.67 · 10−8 Wm−2K−4 is the Stefan-Boltzmann
constant. The emission coefficients of the sail’s front and back side are εf and εb, respectively.
The angular distribution of the emitted and the diffusely reflected photons is described by the
non-Lambertian coefficients of the sail’s front and back side, Bf and Bb, respectively. Thus,
model NPR parameterizes the optical characteristics of the sail film by the following set of opti-
cal coefficients: P = {ρ, s, εf , εb, Bf , Bb}. According to Wright, the optical coefficients for a sail
with a highly reflective aluminum-coated front side and a highly emissive chromium-coated back
side (to keep the sail temperature at a moderate limit, as will be seen later from Eq. (15)) are
PAl|Cr = {ρ = 0.88, s = 0.94, εf = 0.05, εb = 0.55, Bf = 0.79, Bb = 0.55} [2].

Solar Radiation Pressure Force

Using the optical sail coefficients defined above, it can be shown that in a sail-fixed 2D coordinate
frame S = {n, t}, the SRP force exerted on the solar sail has a normal component F⊥ (along n)
and a transverse component F|| (along t, see Fig. 2.2) with

F⊥ = F SRP · n = 2PA cosαψ⊥ (3a)
F|| = F SRP · t = −2PA cosαψ|| (3b)

where

ψ⊥ ,
1
2
(1 + sρ) cosα+

1
2

[
Bf(1− s)ρ+ (1− ρ)

εfBf − εbBb

εf + εb

]
ψ|| ,

1
2
(1− sρ) sinα (4)

Three characteristic optical sail coefficients may be defined to simplify Eq. (4):

a1 ,
1
2
(1 + sρ) a2 ,

1
2

[
Bf(1− s)ρ+ (1− ρ)

εfBf − εbBb

εf + εb

]
a3 ,

1
2
(1− sρ) (5)

so that

ψ⊥ = a1 cosα+ a2 ψ|| = a3 sinα (6)

The total SRP force vector may then be written as

F SRP = (F 2
⊥ + F 2

||)
1/2 m = 2PA cosα(ψ2

⊥ + ψ2
||)

1/2m (7)

or

F SRP = 2PA cosαΨm (8)
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where Ψ , (ψ2
⊥ + ψ2

||)
1/2 depends only on the pitch angle α and the optical coefficients P of the

sail film. Note the symmetry between Eqs. (2) and (8). The angle between m and er is the cone
angle θ and the angle between m and n is called centerline angle φ. It may be calculated via

φ = arctan
(
ψ||

ψ⊥

)
(9)

From Eq. (9), the cone angle is then obtained as

θ = α− φ = α− arctan
(
ψ||

ψ⊥

)
(10)

The SRP force can also be written in components along the unit vectors of a 2D orbit frame
O2 = {er, et}, a decomposition that will be used in the next section to determine which optical
coefficients p ∈ P are the most important ones for OSSD modeling. The O2-frame components of
F SRP can be obtained simply from the S-frame components via(

Fr

Ft

)
=

[
cosα − sinα
sinα cosα

](
F⊥
F||

)
(11)

so that

Fr = F SRP · er = 2PA cosα(a1 cos2 α+ a2 cosα+ a3 sin2 α) (12a)
Ft = F SRP · et = 2PA cosα sinα(a1 cosα+ a2 − a3 cosα) (12b)

Finally, the SRP force can be written in components along er and n [10], a decomposition that
will be used later for the derivation of the optimal control law. The result is:

F SRP = 2PA cosα [b1er + (b2 cosα+ b3)n] (13)

where the coefficients b1, b2, and b3 are defined as

b1 ,
1
2
(1− sρ) b2 , sρ b3 ,

1
2

[
Bf(1− s)ρ+ (1− ρ)

εfBf − εbBb

εf + εb

]
(14)

Solar Sail Temperature

The equilibrium temperature of the solar sail is [3]

T =
[
S0

σ

a

εf + εb

(r0
r

)2

cosα
]1/4

∝ cos1/4 α

r1/2
⇒ rmin ∝

cos1/2 α

T 2
lim

(15)

Thus, T = T (r, α,P). Eq. (15) shows that, for a given sail film-coating combination, there is a
minimum sun-sail distance rmin, which depends not only on the sail film temperature limit Tlim,
but also on the pitch angle α.

Optical SRP Force Sensitivity

Using the SRP force on a black body with an area A perpendicular to the incoming radiation, PA,
one can normalize Fr and Ft, fr = Fr/PA and ft = Ft/PA. The sensitivity of fr and ft with
respect to the different optical coefficients p can then be described by

∂fr

∂p
= cosα(Pp1 cosα+ Pp2 cos 2α)

∂ft

∂p
= cosα sinα(Pp1 + 2Pp2 cosα) (16)

For the optical parameters of an Al|Cr-coated sail, one gets Pρ1 = 0.48573, Pρ2 = 0.94, Ps1 =
−0.6952, Ps2 = 0.88, Pεf1 = 0.2456, Pεb1 = −0.0223, PBf1 = 0.0628, PBb1 = −0.11, Pεf2 = Pεb2 =
PBf2 = PBb2 = 0. Fig. 3 shows how the SRP force components ft and fr vary with α. Note that
the sensitivity of ft and fr is largest with respect to ρ, s, and εf . The sensitivity with respect to
the other optical coefficients is only minor and could be neglected for a first OSSD analysis.
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Figure 3 Sensitivity of the SRP force components w.r.t. the optical coefficients

The Simplified Non-Perfectly Reflecting Solar Sail Model

To simplify model NPR, one may assume specular reflectivity of the sail, s = 1, and equal products
of the emission coefficient and the non-Lambertian coefficient for the front and back side, εfBf =
εbBb. This model will here be denoted as model SNPR (simplified non-perfect reflection). Within
model SNPR, the symbol η denotes the reflection coefficient. The SRP force components in the
S-frame are in this case

F⊥ = 2PA cosαψ⊥ (17a)
F|| = −2PA cosαψ|| (17b)

with

ψ⊥ ,
1
2
(1 + η) cosα ψ|| ,

1
2
(1− η) sinα (18)

and the SRP force components in the O2-frame are

Fr = PA cosα(1 + η cos 2α) (19a)
Ft = PA cosα(η sin 2α) (19b)

Sail Performance Parameters

Within this section, the two most commonly used solar sail performance parameters are introduced.
The characteristic acceleration ac is defined as the SRP acceleration acting on a solar sail that is
oriented perpendicular to the sun line (n ≡ er) at r0 (1AU). For model IR

ac =
2P0A

m
(20)

and for model NPR

ac =
2P0A

m
(a1 + a2) (21)
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The lightness number β is defined as the ratio of the SRP acceleration acting on a solar sail that
is oriented perpendicular to the sun line (n ≡ er), and the gravitational acceleration of the sun,
µ/r2:

β =
ac(r0/r)2

µ/r2
=

ac

µ/r20
(22)

with µ/r20
.= 5.930 mm/s2 as the sun’s gravitational acceleration at Earth distance. Another

possible way to define a lightness number is by thinking of it as a dimensionless sail loading, that
is, βσ , σ∗/σ where σ , m/A is the sail loading and σ∗ , 2P0/(µ/r20) is a reference sail loading
parameter. As a result, βσ plays the role of a technological parameter in that it establishes the
limits of the current (or future) sail technology. With this definition one gets:

ac = βσ (a1 + a2)
µ

r20
(23)

or

βσ =
ac

µ/r20

1
a1 + a2

=
β

a1 + a2
(24)

Equation (24) shows that, in general, βσ 6= β. Note, however, that for model IR a1 + a2 = 1, and
βσ ≡ β. To avoid ambiguity, we will use β as the lightness number for the remainder of this paper.

THE NON-PERFECTLY REFLECTING SOLAR SAIL WITH DEGRA-
DATION

Data Available From Ground Testing

Although much ground and space testing has been done to measure the optical degradation of
metalized polymer films as second surface mirrors (metalized on the back side), to our knowledge,
no systematic testing to measure the optical degradation of candidate solar sail films (metalized
on the front side) has been reported so far. Lura et. al. reported in Ref. 11 considerable OSSD
after combined irradiation with VUV, electrons, and protons, whereas Edwards et. al. reported in
Ref. 12 that a change of the solar absorption and emission coefficients could not be measured after
irradiation with electrons alone. Because respective in-space tests have not been made so far, the
optical degradation behavior and therefore the degradation behavior of the propulsive capability
of solar sails in the real space environment is to a considerable degree indefinite. Nevertheless,
solar sail mission designers necessitate an OSSD model to estimate the potential effects of OSSD
on their missions. Therefore, the authors of this paper established in November 2004 a “Solar Sail
Degradation Model Working Group” with the aim to elaborate a parametric model for OSSD.

Parametric Degradation Model

For a first OSSD model, the following simplifications may be made:

1. The only source of degradation are the solar photons and particles. This simplification is
reasonable at least in the inner solar system and far from the planets, where the cosmic
radiation, the radiation from the planetary radiation belts and reactions with particles of the
planetary atmospheres can be neglected.

2. The solar photon and particle fluxes do not depend on time (average sun without solar
events).

3. The optical coefficients do not depend on the sail temperature.

7



4. The optical coefficients do not depend on the light incidence angle.

5. No self-healing effects occur in the sail film.

Let p be an arbitrary optical coefficient from P. With OSSD, p becomes time-dependent, p(t).
With the simplifications stated above, p(t) is a function of the solar radiation dose (SRD, dimension[
J/m2

]
) accepted by the solar sail within the time interval t− t0:

Σ̃(t) ,
∫ t

t0

S cosαdt′ = S0r
2
0

∫ t

t0

cosα
r2

dt′ (25)

The symbol Σ̃ is used for the SRD, this way preserving Σ for the dimensionless SRD. The SRD
per year on a surface that is perpendicular to the sun at 1AU is

Σ̃0 = S0 · 1 yr = 1368 W/m2 · 1 yr = 15.768 TJ/m2 (26)

Using Σ̃0 as a reference value, the SRD can also be defined in a dimensionless form as

Σ(t) =
Σ̃(t)
Σ̃0

=
(
r20

∫ t

t0

cosα
r2

dt′
)/

1 yr (27)

Because the solar particle flux Spf also varies with cosα/r2, its (damaging) dose within the time
interval t−t0 can be written as Σpf(t) = γpfΣ(t), so that p(t) = p(Σ(t)+Σpf(t)) = p((1+γpf)Σ(t)) =
p(Σ(t)). Thus, the degradation effects of the solar particles do not have to be considered separately.
Σ(t) depends on the solar distance history and the attitude history z[t] = (r, α)[t] of the solar sail,
Σ(t) = Σ(z[t]). Eq. (27) can also be rearranged in differential form as

Σ̇ =
r20
T

cosα
r2

with Σ(t0) = 0 (28)

where T , 1 yr. We assume that p(t) varies exponentially between p(t0) = p0 and lim
t→∞

p(t) = p∞:

p(t) = p∞ + (p0 − p∞) · e−λΣ(t) (29)

The degradation constant λ is related to the “half life solar radiation dose” Σ̂ (Σ = Σ̂ ⇒ p = p0+p∞
2 )

via

λ =
ln 2
Σ̂

(30)

Note that this model has 12 free parameters additional to the 6 p0, 6 p∞ and 6 half life SRDs Σ̂p.
Because 12 parameters are too much for a simple parametric OSSD analysis, the number of free
parameters should be reduced. This is done here by introducing a degradation factor d and by
using a single half life SRD for all p, Σ̂p = Σ̂ ∀p ∈ P. Because the reflectivity of the sail decreases
with time, the sail becomes more matt with time, and the emissivity increases with time, we can
use

ρ∞ =
ρ0

1 + d
s∞ =

s0
1 + d

εf∞ = (1 + d)εf 0 (31)

εb∞ = εb0 Bf∞ = Bf 0 Bb∞ = Bb0 (32)

The degradation of the optical parameters can again be written in dimensionless form:

p(t)
p0

=


(
1 + de−λΣ(t)

)
/ (1 + d) for p ∈ {ρ, s}

1 + d
(
1− e−λΣ(t)

)
for p = εf

1 for p ∈ {εb, Bf , Bb}
(33)
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Fig. 4.1 shows the variation of those coefficients with Σ for different degradation factors d. Using
this model, the a/εf -ratio raises from

a0

εf 0
=

1− ρ0

εf 0
= 2.4

to

a∞
εf∞

=
1 + d− ρ0

(1 + d)2εf 0

whose value is 3.1 for a 5% degradation limit, 3.6 for a 10% degradation limit, and 4.4 for a 20%
degradation limit (to keep the terminology simple, we will use the term “a 100d% degradation
limit” synonymously for “a degradation factor of d”). Fig. 4.2 shows how the maximum sail
temperature Tmax varies with Σ for different solar distances 0.2 AU ≤ r ≤ 1 AU.

0.02
0.02

0.04

0.04

0.06
0.06

0.08
0.08

0.1

0.1

0.12

0.12

0.14

0.14

0.16

0.16

0.18

0.18

0.2

0.2

 Σ

 ρ
/ρ

0 , 
s/

s 0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0.8

0.85

0.9

0.95

1

0.02
0.02

0.040.04

0.06
0.06

0.08
0.08

0.1
0.1

0.12

0.12

0.14

0.
14

0.16

0.
16

0.18

0.18

0.2
0.2

 Σ

 ε
f /ε

f0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

1

1.05

1.1

1.15

1.2

d

d

4.1: Variation of ρ/ρ0, s/s0, and εf/εf 0 with Σ

Σ

T
m

ax
(α

=0
)

[°
C

]

0 1 2 3 4

0

100

200

300

400

r = 0.2 AU

r = 1.0 AU

r = 0.8 AU

r = 0.6 AU

r = 0.4 AU

Frame 001 ⏐ 23 Jun 2005 ⏐

4.2: Variation of Tmax with Σ for different solar distances
(d = 0.2)

Figure 4 OSSD of the optical parameters and its effect on the sail temperature

Fig. 5.1 shows the evolution of the F SRP-bubble (the bubble on which surface the tip of F SRP is
constrained to lie) with increasing SRD, and Fig. 5.2 shows the evolution of the difference between
the pitch and the cone angle with increasing SRD. Let F ∗

t = maxα Ft denote the maximum SRP
force component along et (the direction along which the orbital energy is changed most effectively),
α∗ the pitch angle that yields F ∗

t , and the associated cone angle θ∗. Fig. 5.3 shows how their values
vary with Σ.

Note that the OSSD model described here can be directly applied to the generalized sail model
(GSM) detailed in Ref. 4. The GSM can model non-flat sails and more complex sail geometries,
using the flat plate model given in Eqs. (3)-(5) to define differential sail properties. Because the
same optical parameters as given in Eq. (5) are used in the GSM, the effect of optical degradation
on the sail can be modeled in the same way. Thus, it is possible to directly apply this model to the
more realistic GSM. For sake of simplicity, such a detailed analysis is not performed in the current
paper, but would be of interest for the analysis of a specific sail design.
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Figure 5 OSSD effects on attitude control (d = 0.2)

POTENTIAL DEGRADATION EFFECTS ON TRAJECTORY DESIGN

Equations of Motion and Optimal Control Law

Besides the gravitational forces of all celestial bodies and the SRP force, many disturbing forces,
as caused, e.g., by the solar wind, the finiteness of the solar disk, the reflected light from close
celestial bodies, and the aberration of solar radiation (Poynting-Robertson effect), influence the
motion of solar sails in space. Furthermore, a real solar sail bends and wrinkles, depending on the
actual sailcraft design. Ideally, all these effects have to be considered for high-precision trajectory
determination.

For mission feasibility analysis, and to isolate the effects of OSSD from the other effects that
influence the motion of real solar sails in space, the following simplifications are made:

1. The solar sail is a flat plate.

2. The solar sail is moving under the sole influence of solar gravitation and radiation.

3. The sun is a point mass and a point light source.

4. The solar sail attitude can be changed instantaneously.

Let the reference frame I = {ex, ey, ez} be an inertial right-handed cartesian coordinate frame.
The equations of motion for a solar sail in the I-frame are:

ṙ = v (34a)

v̇ = − µ

r3
r + a (34b)

where r = (rx, ry, rz) is the sailcraft position and v = (ṙx, ṙy, ṙz) = (vx, vy, vz) is the sailcraft
velocity, r = |r|, µ is the sun’s gravitational parameter, and a = aSRP + ad is the acceleration
acting on the sailcraft (aSRP being the SRP acceleration and ad being the disturbing acceleration,
which is neglected within this paper). Combining Eqs. (13) and (22), the SRP acceleration is given
by

aSRP =
β

b1 + b2 + b3

µ

r2
cosα [b1er + (b2 cosα+ b3)n] (35)

Although it is very convenient to describe the translational motion of spacecraft in I-frame coor-
dinates, the spacecraft control is better described in the reference frame O3 = {er, et, eh}. The
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components of n in the O3-frame are:

n = cosα er + sinα cos δ et + sinα sin δ eh (36)

where α is the sail pitch angle and δ is the sail clock angle. Clearly, α and δ comprise the solar
sail control u. The problem is to find the optimal control law u(t) (where t ∈ [t0 = 0, tf ]), which
minimizes the time tf necessary to transfer the spacecraft from an initial state x0 = (r0,v0) to
a final state xf = (rf ,vf ) by maximizing the performance index J = −tf . From Eq. (34), the
Hamiltonian of the system is

H = λλλr · v −
µ

r3
λλλv · r + λλλv · a + λΣ

r20
r2T

er · n (37)

where λλλr and λλλv are the vectors adjoint to the position and the velocity, respectively, and λΣ

is the costate associated to Σ. The primer vector λλλv can be conveniently expressed in the O3-
frame [13]. Paralleling what has been done for n, we define the orientation of λλλv through the
angles αλ ∈ [0, π/2] and δλ ∈ [−π, π] to get

λλλv = λv(cosαλ er + sinαλ cos δλ et + sinαλ sin δλ eh) (38)

where λv = |λλλv|. The time derivatives of the adjoint variables are provided by the Euler-Lagrange
equations‡:

λ̇̇λ̇λr = −∂H
∂r

λ̇̇λ̇λv = −∂H
∂v

λ̇Σ = −∂H
∂Σ

(39)

Eq. (39) provides 7 scalar differential equations that must be solved along with the equations of
motion, Eqs. (34) and (28). From Pontryagin’s maximum principle, the optimal control law u(t),
to be selected in the domain of feasible controls U , is such that at any time the Hamiltonian is
an absolute maximum. This amounts to maximizing the function H′, which coincides with that
portion of the Hamiltonian H that explicitly depends on the control vector, viz.

u = arg max
u∈U

H ≡ arg max
u∈U

H′ with H′ , λλλv · a + λΣ
r20
r2T

er · n (40)

Substituting Eqs. (13), (36), and (38) into Eq. (40) and using the necessary condition ∂H′/∂δ = 0,
one has

tan δ = tan δλ (41)

Eq. (41) states that the unit vectors er, n and eλλλv
, λλλv/λv are coplanar. This generalizes a

similar conclusion obtained for model NPR without degradation [10]. This result is justified by the
fact that H′ depends on the OSSD model through the term λΣr

2
0/r

2T er · n, which, in turn, is a
function of α but not of δ. Concerning the optimal steering law for α, an explicit or semi-analytic
solution is – in contrast to the ideal and optical force model cases – hardly retrievable [10, 14]. In
fact, invoking the necessary condition ∂H′/∂α = 0, the following equation is obtained for α:

b1 [sin (α+ αλ) + sin (α− αλ)]

+
b2
2

[2 sin (α− αλ) + 3 sin (3α− αλ) + sin (α+ αλ)]

+ 2 b3 sin (2α− αλ) + bΣ sinα = 0

(42)

where

bΣ ,
2 r20 λΣ

β µT λv
(b1 + b2 + b3) (43)

‡ The explicit form of the partial derivatives is not shown here due to its complexity.
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The dimensionless variable bΣ models the optical degradation of the solar sail. In the ideal case
without degradation (λΣ ≡ 0 ⇒ bΣ ≡ 0), Eq. (42) provides the optimal control law for the optical
force model. The corresponding solution is given in Ref. 10. At a generic time t, for a given pair
(β, d), one can calculate the values taken by bΣ, Σ, b1, b2, and b3 (which, in turn, depend on
Σ, λ, and d). Let S be the region of the (α, αλ)-plane that satisfies the conditions H′ ≥ 0 and
∂2H′/∂α2 < 0 (convexity condition). Consider the set of pairs (α̃, α̃λ) to be solutions of Eq. (42).
Note that for a given α̃λ, the corresponding value of α̃ is obtained through a numerical solution of
Eq. (42) (for example using a Newton algorithm). Clearly, α̃ maximizes H′, provided (α̃, α̃λ) ∈ S.
Otherwise, α should be selected in order to render H′ = 0, that is α = π/2. To summarize, the
optimal steering law is given by:

α =

{
α̃ if H′(α̃, α̃λ) ≥ 0
π/2 if H′(α̃, α̃λ) < 0

(44)

For a 20% degradation limit, Fig. 6 shows the optimal steering law for different values of bΣ and Σ
along with the region S (shaded region). The boundary value problem associated to the variational
problem is constituted by the equations of motion, Eqs. (34) and (28), and by the Euler-Lagrange
equations, Eq. (39). The boundary conditions are constrained by the planetary ephemerides. They
provide 12 scalar conditions connected to the position and velocity of the solar sail at both t0 and
tf . The other boundary condition is given by the initial value of Σ(t0) = 0. The transversality
conditions λΣ(tf ) = 0 and H(tf ) = 1 complete the differential problem.
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Figure 6 Optimal control law (thick line) for the pitch angle α.

Mars Rendezvous

As the first case to investigate the consequences of OSSD for trajectory design, the control laws
described in the last section have been applied to a 2D circular orbit-to-circular orbit Earth-Mars
transfer (the final position of Mars is left free) using solar sails with various lightness numbers and
degradation limits. Like for all trajectories within this paper, direct interplanetary insertion of the
solar sail at Earth with zero hyperbolic excess energy (C3 = 0km2/s2) is assumed. The trajectories
within this section have been calculated using a hybrid numerical technique that combines genetic
algorithms to obtain a rough estimate of the adjoint variables with gradient-based and direct
methods to refine the solution [10]. The differential equations have been integrated in double
precision using a Runge-Kutta-fifth-order scheme with absolute and relative errors of 10−12. A set
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of canonical units has been used to reduce their numerical sensitivity [15]. The impact of the OSSD
model on mission performance has been investigated using three different mathematical models:

Model (a): Within this model, an instantaneous degradation of the optical parameters of the
sail is assumed. At t = t0, ρ, s, and εf attain immediately their end-of-life values, ρ∞,
s∞, and εf∞. From a mathematical viewpoint, this corresponds to Σ̂ → 0 and hence λ →
∞. Accordingly, for a given characteristic acceleration, the obtained performance should be
considered as an upper bound for the trip times.

Model (b): Within this model, the degradation of the optical parameters has been taken into
account in the numerical integration (that is, in the equations of motion and in the Euler-
Lagrange equations), but it has been neglected during the evaluation of the steering law.
In other words, the steering law for solar sails without degradation (given in Ref. 10) has
also been used for the degrading sails. From a mathematical viewpoint, this corresponds
to assuming bΣ ≡ 0 and bi(t) ≡ bi(t0) (i = 1, 2, 3) in Eq. (42) only. This model allows to
estimate the effect of the OSSD model on the “ideal” control law (that is, on the control law
obtained without taking the degradation effect into account). This simplifies the practical
implementation of the steering law because the latter is a function of one time-dependent
variable only (the primer vector pitch angle αλ).

Model (c): Within this model, the optimal control problem is solved using the OSSD model and
the optimal control law described in Eq. (44).

For comparative purposes, also optimal trajectories without degradation have been calculated
(these correspond to the model described in Ref. 10). Accordingly, the corresponding results
should be considered as a lower bound for the trip times. Fig. 7 summarizes the results obtained
for the different models and a degradation limit of 5% and 20%. The trip times obtained from
model (b) are nearly coincident with that from model (c). The main reason is that the values of
bΣ are small in all simulations (recall that the transversality condition requires bΣ(tf ) = 0). As
expected, the trip times for model (a) are much greater than that obtained with non-instantaneous
degradation. Finally, note that an increase of the degradation factor has remarkable consequences
on trip times. This confirms that the degradation of the optical sail characteristics should not be
neglected for a thorough trajectory design and that an ideal model provides excessively optimistic
results.

Mercury Rendezvous

The second case to investigate the consequences of OSSD for trajectory design is a Mercury ren-
dezvous for a solar sail with a characteristic acceleration of ac = 1.0 mm/s2. The trajectories within
this section have been calculated using the trajectory optimizer GESOP [16] with SNOPT [17].
The final accuracy limit for the trajectories was set to ∆rf,max = 80 000 km (inside Mercury’s
sphere of influence at perihelion) and ∆vf,max = 50m/s. Trajectories have been calculated for
degradation limits of 0%, 5%, 10%, and 20%, with a half life SRD of Σ̂ = 0.5. Firstly, the effects of
the degradation limit on trip time was investigated for an arbitrarily selected launch window that
ranges from MJD 57000 (09 Dec 2014) to MJD 57130 (18 Apr 2015). Fig. 8.1 shows the trip time
over the launch date, whereas Fig. 8.2 shows the trip time increase over the launch date. It can be
seen from Fig. 8.1 that the sensitivity of the trip time with respect to OSSD depends considerably
on the launch date. Some launch dates considered previously as optimal become very unsuitable
when OSSD is taken into account because an additional revolution about the sun is required prior
to rendezvous. Note that the optimal launch date for zero degradation is the worst launch date
for a 20% degradation limit. For many launch dates, however, OSSD does not seriously affect the
mission, as Fig. 8.1 shows. Given an indefinite OSSD behavior at launch, MJD 57000.0 would be
a very robust launch date. Fig. 9.1 shows the optimal variation of the pitch angle α along the
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Figure 7 Trip times for an Earth-Mars circular orbit-to-circular orbit transfer for a degradation limit

of 5% and 20% (Σ̂ = 0.5).
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8.1: Trip time over launch date

Launch date (MJD)

T
rip

tim
e

in
cr

ea
se

[%
]

57000 57050 57100 57150
0

5

10

15

20

25

30

35

Half life SRD=0.5 (S0*yr)

Degradation limit:

5%

10%

20%

Launch window for Mercury rendezvous
Solar sail with ac=1.0mm/s2

Frame 001 ⏐ 27 Jun 2005 ⏐ Mercury Launch Window with OSSD

8.2: Trip time increase over launch date

Figure 8 Launch window for Mercury rendezvous for different degradation limits

trajectory for this launch date, Fig. 9.2 for a launch 30 days later. In summary, the results show
that OSSD can have remarkable consequences on trip times (Fig. 8) and also on the optimal control
angles (Fig. 9). Another important point, which could not be seen from the Mars orbit-to-orbit
transfer, is that the actual trip time might be tremendously above the lower bound calculated for
orbit-to-orbit transfers, if the launch and the target body are in an unfavorable constellation at
launch.
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Figure 9 Optimal sail pitch angle variations for different degradation limits

Fast Neptune Flyby

The third case to investigate the consequences of OSSD for trajectory design is a fast Neptune
flyby for a solar sail with a characteristic acceleration of ac = 1.0 mm/s2. The trajectories within
this section have been calculated using InTrance [18], a method that combines artificial neural
networks and evolutionary algorithms to find near-globally optimal steering strategies. To find the
absolute trip-time minima, independent of the actual constellation of Earth and Neptune, no flyby
at Neptune itself, but only a crossing of its orbit within a distance of less than 106 km was required,
and InTrance was allowed to vary the launch date within a one year interval. Therefore, the
resulting trip times represent lower bounds that are strictly valid only for the optimal constellation
of Earth and Neptune. Specific suboptimal launch dates/constellations, e.g., when Neptune is at
aphelion, might yield longer trip times. Although a final distance of 106 km is relatively large
for a planetary flyby, the control profile found by InTrance can be used as initial guess for some
local trajectory optimization method with a better local convergence behavior. Alternatively, the
neurocontroller parameters found by InTrance can be used as initial guess for another run of
InTrance (with a more demanding final constraint, e.g. 1000 km above planetary surface). The
sail film temperature was limited to Tlim = 240◦C = 513.15 K. Fig. 10 shows the trajectories and
steering profiles for a 0% and a 20% degradation limit. Fig. 11.1 shows the SRD increase and
Fig. 11.2 the variation of the solar distance with time. One can see that the aphelion of the last
loop becomes larger with an increasing degradation limit and therefore the final solar photonic
assist (SPA), i.e., the last close solar approach, occurs later. Fig. 12 shows the trip times for
various degradation limits and half life SRDs together with the associated increases.

Fast Transfer to the Heliopause

The fourth case to investigate the consequences of OSSD for trajectory design is a fast solar sail
mission to the heliopause. Following loosely the requirements for ESA’s Interstellar Heliopause
Probe (IHP) study [19, 20], the spacecraft should be delivered to the nose of the heliosphere at a
latitude of 7.5 deg and a longitude of 254.5 deg (in the ecliptic coordinate frame) at 200AU from the
sun in 25 years. The sail is jettisoned at 5 AU to eliminate any potential interference caused by the
solar sail on the local space environment. The trajectories have been calculated using AnDblending,
a method that blends locally optimal control laws [21–23]. Thereby, each control law is prioritized
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Figure 10 Topology of optimal Neptune transfer trajectories for different degradation limits
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Figure 11 Optimal Neptune transfer for different degradation limits

by consideration of how efficiently it will use the SRP and how far each orbital element is from
its target value. For non-ideal non-degrading solar sails (model NPR), it has been demonstrated
that the trajectories found with AnD blending and InTrance are very similar [21]. A characteristic
acceleration of 1.75 mm/s2 was selected for this analysis, which gives a zero degradation trip time
of 21.74 years. For the trajectories within this section a fixed minimum radius of 0.25 AU, a half
life SRD of Σ̂ = 0.5 (S0 · yr) and a fixed launch date of 03 January 2030 was used. Fig. 13.1
shows the trip time and Fig. 13.2 shows the trip time increase for 0 ≤ d ≤ 0.3. For d ≤ 0.2, the
trip time increase is exactly linear. For d = 0.25 and 0.3 the trip time does not fit the expected
linear relationship as the sail continues to increase the inclination beyond the point where effort
would be better spent gaining orbital energy. Fig. 13.1 shows that the radius of aphelion passage
increases by over 1 AU as the degradation limit is increased from zero to 30%. Fig. 13.3 shows
that the velocity of the spacecraft at sail jettison is decreasing in an approximately linear manner,
although the time to sail jettison much more closely matches the shape of the aphelion passage
relationship. It is thus notable that given that all these relationships are only approximately linear,

16



Sail degradation limit [%]

__
_

T
rip

tim
e

[y
rs

]

_
_

T
rip

tim
e

in
cr

ea
se

[%
]

0 5 10 15 20
0

1

2

3

4

5

6

7

8

0

10

20

30

40
Fast Earth-Neptune transfer with solar sail (ac=1.0mm/s2)
Half life SRD = 0.5 (S0*yr)

C3=0km2/s2 at Earth
Flyby at Neptune orbit within Δr<1.0E6km

Frame 001 ⏐ 27 Jun 2005 ⏐ Flight Time
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12.2: Different half life SRDs

Figure 12 Trip time and trip time increase for optimal Neptune transfer
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13.1: Trip time to 200 AU and radius of aphelion passage
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13.2: Trip time increase
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13.3: Trip time and velocity at 5 AU (sail jettison point)
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13.4: Final optical coefficient values and SRD

Figure 13 Transfer to 200AU for different degradation limits (Σ̂ = 0.5)

the trip time to 200 AU is exactly linear for 0 ≤ d ≤ 0.2. Fig. 13.4 shows the value of the optical
coefficients at sail jettison and the total SRD increase with degradation limit. Fig. 14.1 shows the
most favorable trajectory plot for each degradation limit. Note that a change in degradation limit
for a fixed start epoch significantly changes the final spacecraft azimuth at 200AU, which would
significantly impact mission science objectives. In Fig. 14.1 it is seen that the SPA occurs at the
same physical location independent of the degradation limit as the argument of pericenter is not
varied from trajectory to trajectory, although the time of each SPA is seen to vary by as much as
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11/4 years in Fig. 14.2. Fig. 14.2 also shows that for 0 ≤ d ≤ 0.2 the inclination has attained its
final value significantly before the SPA. At d = 0.25 the inclination reaches 7.5 deg just prior to
the SPA, while at d = 0.3 this does not occur until after the SPA.

14.1: Inner solar system trajectories 14.2: Variation of solar distance and inclination

Figure 14 Transfer to 200AU for different degradation limits (Σ̂ = 0.5)

The sail control angles used in each best case trajectory are illustrated in Fig. 15.1 where it is
noted that the maximum pitch angle of each trajectory is similar, yet the maximum cone angles
decreases in-line with the degradation limit increase. Furthermore, the size of the discontinuity
within each control angle profile decreases as d increases. Fig. 15.2 shows the variation of the
optical coefficients for the trajectories shown in Fig. 14.1, where it is seen that the bulk of the
degradation occurs during the close solar pass. It is thus logical to assume that multiple close solar
passes would have an adverse effect on the quality of the optical surface and should be avoided
when designing such trajectories.

15.1: Variation of control angles 15.2: Variation of optical coefficients

Figure 15 Transfer to 200AU for different degradation limits (Σ̂ = 0.5)
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Artificial Lagrange-Point Missions

This section will examine the artificial Lagrange point problem for solar sails with different re-
flection coefficients η according to the simplified non-perfectly reflecting solar sail model (model
SNPR). Firstly, equilibrium solutions will be obtained for an ideal solar sail (model IR). Then,
the problem will be revisited for solar sails with a reflection coefficient η < 1. Due to the effect
that the SRP force vector is no longer directed along n, it will be shown that the volume of space
available for artificial Lagrange points is extremely sensitive to the reflection coefficient.

Equilibrium Solutions for Model IR

Figure 16 Sun-Earth restricted circular three-body problem with non-perfectly solar sail

Firstly, equilibrium solutions for an ideal sail will be derived. The ideal sail will be considered in
a frame of reference co-rotating with the two primary masses m1 (Sun) and m2 (Earth or other
planet) at constant angular velocity ωωω, as shown in Fig. 16. The sail attitude is defined by the sail
normal vector n, fixed in the rotating frame of reference. In addition, the ratio of the SRP force
to the solar gravitational force exerted on the sail is defined by the sail lightness number β. Since
for m1 >> m2 both forces have approximately an inverse square variation with solar distance the
sail lightness number is nearly a constant (the finite size of the solar disc leads to a very small
deviation of the SRP from a 1/r21 law). It can be shown that the sail lightness number is related
to the total solar sail mass per unit area σ by σ = 1.53 g/m2/β. Let the unit of mass be chosen
such that µ̄ = G(m1 +m2) = 1. If we now define µ = m2/(m1 +m2) then in this system the two
masses are µ1 = 1− µ and µ2 = µ. The unit of length is chosen such that the constant separation
of the two masses is also unity. The vector equation of motion for a solar sail in this rotating frame
of reference may be written in standard form as

r̈ + 2ωωω × ṙ +∇U = a (45)

with the three-body gravitational potential U and the solar radiation pressure acceleration a
defined by

U = −
[
1
2
(x2 + y2) +

1− µ

r1
+
µ

r2

]
(46a)

a = β
1− µ

r2
(r̂1 · n)2n (46b)

where the sail position vectors are defined as r1 = (x + µ, y, z) and r2 = (x − (1 − µ), y, z).
Equilibrium solutions are now required in the rotating frame of reference so that the first two
terms of Eq. (45) vanish. The five classical Lagrange points are then obtained as the solutions to
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∇U = 0 with r̂1 ·n = 0 and so a = 0. However, for r̂1 ·n > 0 there is an additional acceleration a
which is a function of the lightness number β and the attitude n so that new artificial equilibrium
solutions may be generated. Since the vector a is oriented in direction n, taking the vector product
of Eq. (45) with n it follows that

∇U × n = 0 ⇒ n = λ∇U (47)

where λ is an arbitrary scalar multiplier. Using |n| = 1, λ is identified as 1/|∇U | so that the
required sail attitude is defined by

n =
∇U
|∇U |

(48)

which can be used to obtain the pitch angle α. The required sail lightness number may also be
obtained by taking the scalar product of Eq. (45) with n. Again requiring an equilibrium solution
it is found that

β =
r2

1− µ

∇U · n
(r̂1 · n)2

(49)

Since the sail lightness number and attitude can be selected, the set of five classical Lagrange
points will be replaced by an infinite set of artificially generated equilibrium solutions. The regions
in which these new solutions may exist are defined by the constraint r̂1 · ∇U ≥ 0 with a boundary
surface defined by an equality. This constraint may be understood physically since the solar
radiation pressure acceleration vector a, and so the sail normal vector n, can never be directed
sunward. The boundary surface has two topologically disconnected surfaces S1 and S2 which define
the region of existence of equilibrium solutions near m2. The classical equilibrium solutions lie on
either S1 or S2 since they are the solutions to ∇U = 0. Surfaces of constant sail lightness number
generated from Eq. (49) for the Earth-Sun system are shown in Fig. 17.1. In general, the surfaces
of constant sail lightness number approach these boundaries asymptotically with β → ∞ when
r̂1 · n → 0 as is clear from Eq. (49). It can be seen that as the sail lightness number increases
larger volumes of space are accessible for artificial equilibrium points.

Equilibrium Solutions for Model SNPR

Now, model SNPR will be considered, which allows – in contrast to model NPR – a closed-form
solution. The SRP acceleration will act now in direction m and may be written as the sum of
components normal to the sail surface (along n) and transverse to the sail surface (along t)

am =
1
2
β

1− µ

r2
(1 + η)(r̂1 · n)2n +

1
2
β

1− µ

r2
(1− η)(r̂1 · n)(r̂1 · t)t (50)

where (r̂1 ·n) is cosα and (r̂1 · t) is sinα. The analysis presented in the previous section will now
be repeated using the sail force model defined by Eq. (50) so that the equation of motion may now
be written as

r̈ + 2ωωω × ṙ +∇U = am (51)

For an equilibrium solution the first two terms of Eq. (51) will again vanish so that the sail attitude
must be chosen as

m =
∇U
|∇U |

(52)

The unit vector m can now be defined by the cone angle θ between r̂1 and m as

tan θ =
|r̂1 ×∇U |
r̂1 · ∇U

(53)
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17.1: η = 1 17.2: η = 0.9

17.3: η = 0.8 17.4: η = 0.7

Figure 17 Contours of sail loading σ in the x-z-plane: [1] 30 [2] 15 [3] 10 [4] 5 (in g/m2)

In addition, using Eq. (50), the centerline angle can be obtained from the ratio of the transverse
and normal accelerations as

tanφ =
1− η

1 + η
tanα (54)

where the pitch angle α = θ + φ. Noting that n · t = 0 and taking a scalar product of Eq. (51)
with the unit vector n gives the required sail lightness number as

β =
2r2

1− µ

∇U · n
(1 + η)(r̂1 · n)2

(55)

The centerline angle may be obtained explicitly by again noting that α = θ+ φ. Then, after some
reduction, Eq. (54) yields the centerline angle directly from the cone angle as

tanφ =
η

(1 + η) tan θ

[
1−

√
1− 1− η2

η2
tan2 θ

]
(56)

Lastly, using Eq. (55) it is found that the required sail lightness number may be obtained in terms
of the lightness number for an ideal solar sail β̃ as

β =
2

1 + η

√
1 + tan2 φ

(1− tan θ tanφ)2
β̃ (57)
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where β̃ is defined by Eq. (49). Therefore, using Eqs. (53), (56) and (57) the sail orientation and
sail lightness number required for an artificial equilibrium solution can be obtained. The effect of
a non-ideal solar sail and OSSD is shown in Fig. 17 for a η = 0.9, 0.8, and 0.7. Firstly, it can be
seen that the volume of space available for equilibrium solutions about L2 is significantly reduced.
This is due to the centerline angle which limits the direction in which the SRP force vector can be
directed. For solutions near L1 the main effect of the non-ideal sail is to displace the equilibrium
solutions towards the Earth. This is due to the reduction in the SRP force magnitude rather than
the centerline angle. In general, we can state that equilibrium solutions sunward of L1 are not
greatly effected by OSSD while equilibrium solutions about L2 are severely restricted.

SUMMARY AND CONCLUSIONS

Based on the current standard model for non-perfectly reflecting solar sails, we have developed a
parametric model that includes the optical degradation of the sail film due to the erosive effects
of the space environment. Using this model, we have investigated the effect of different potential
degradation behaviors on trajectory design for various exemplary missions. All our results show
that, in general, optical solar sail degradation has a considerable effect on trip times and on
the optimal steering profile. For specific launch dates, especially those that are optimal without
degradation, this effect can be tremendous. Having demonstrated the potential effects of optical
solar sail degradation on future missions, more research on the real degradation behavior has
to be done because the degradation behavior of solar sails in the real space environment is to
a considerable degree indefinite. To narrow down the ranges of the parameters of our model,
further laboratory tests have to be performed. Additionally, before a mission that relies on solar
sail propulsion is flown, the candidate solar sail films have to be tested in the relevant space
environment. Some near-term missions currently studied in the US and Europe would be an ideal
opportunity for testing and refining our degradation model.
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