312 research outputs found

    Numerical Simulations of Hyperfine Transitions of Antihydrogen

    Full text link
    One of the ASACUSA (Atomic Spectroscopy And Collisions Using Slow Antiprotons) collaboration's goals is the measurement of the ground state hyperfine transition frequency in antihydrogen, the antimatter counterpart of one of the best known systems in physics. This high precision experiment yields a sensitive test of the fundamental symmetry of CPT. Numerical simulations of hyperfine transitions of antihydrogen atoms have been performed providing information on the required antihydrogen events and the achievable precision

    An atomic hydrogen beam to test ASACUSA's apparatus for antihydrogen spectroscopy

    Full text link
    The ASACUSA collaboration aims to measure the ground state hyperfine splitting (GS-HFS) of antihydrogen, the antimatter pendant to atomic hydrogen. Comparisons of the corresponding transitions in those two systems will provide sensitive tests of the CPT symmetry, the combination of the three discrete symmetries charge conjugation, parity, and time reversal. For offline tests of the GS-HFS spectroscopy apparatus we constructed a source of cold polarised atomic hydrogen. In these proceedings we report the successful observation of the hyperfine structure transitions of atomic hydrogen with our apparatus in the earth's magnetic field.Comment: 8 pages, 4 figures, proceedings for conference EXA 2014 (Exotic Atoms - Vienna

    Measurement of the hyperfine structure of antihydrogen in a beam

    Full text link
    A measurement of the hyperfine structure of antihydrogen promises one of the best tests of CPT symmetry. We describe an experiment planned at the Antiproton Decelerator of CERN to measure this quantity in a beam of slow antihydrogen atoms.Comment: 5th International Symposium on Symmetries in Subatomic Physics (SSP2012), Groningen (The Netherlands), June 18 to 22, 201

    A hydrogen beam to characterize the ASACUSA antihydrogen hyperfine spectrometer

    Full text link
    The antihydrogen programme of the ASACUSA collaboration at the antiproton decelerator of CERN focuses on Rabi-type measurements of the ground-state hyperfine splitting of antihydrogen for a test of the combined Charge-Parity-Time symmetry. The spectroscopy apparatus consists of a microwave cavity to drive hyperfine transitions and a superconducting sextupole magnet for quantum state analysis via Stern-Gerlach separation. However, the small production rates of antihydrogen forestall comprehensive performance studies on the spectroscopy apparatus. For this purpose a hydrogen source and detector have been developed which in conjunction with ASACUSA's hyperfine spectroscopy equipment form a complete Rabi experiment. We report on the formation of a cooled, polarized, and time modulated beam of atomic hydrogen and its detection using a quadrupole mass spectrometer and a lock-in amplification scheme. In addition key features of ASACUSA's hyperfine spectroscopy apparatus are discussed.

    Isomer shift and magnetic moment of the long-lived 1/2+^{+} isomer in 3079^{79}_{30}Zn49_{49}: signature of shape coexistence near 78^{78}Ni

    Full text link
    Collinear laser spectroscopy has been performed on the 3079^{79}_{30}Zn49_{49} isotope at ISOLDE-CERN. The existence of a long-lived isomer with a few hundred milliseconds half-life was confirmed, and the nuclear spins and moments of the ground and isomeric states in 79^{79}Zn as well as the isomer shift were measured. From the observed hyperfine structures, spins I=9/2I = 9/2 and I=1/2I = 1/2 are firmly assigned to the ground and isomeric states. The magnetic moment μ\mu (79^{79}Zn) = -1.1866(10) μN\mu_{\rm{N}}, confirms the spin-parity 9/2+9/2^{+} with a νg9/21\nu g_{9/2}^{-1} shell-model configuration, in excellent agreement with the prediction from large scale shell-model theories. The magnetic moment μ\mu (79m^{79m}Zn) = -1.0180(12) μN\mu_{\rm{N}} supports a positive parity for the isomer, with a wave function dominated by a 2h-1p neutron excitation across the N=50N = 50 shell gap. The large isomer shift reveals an increase of the intruder isomer mean square charge radius with respect to that of the ground state: δrc279,79m\delta \langle r^{2}_{c}\rangle^{79,79m} = +0.204(6) fm2^{2}, providing first evidence of shape coexistence.Comment: 5 pages, 4 figures, 1 table, Accepeted by Phys. Rev. Lett. (2016

    Study of a Large NaI(Tl) Crystal

    Full text link
    Using a narrow band positron beam, the response of a large high-resolution NaI(Tl) crystal to an incident positron beam was measured. It was found that nuclear interactions cause the appearance of additional peaks in the low energy tail of the deposited energy spectrum

    High Purity Pion Beam at TRIUMF

    Full text link
    An extension of the TRIUMF M13 low-energy pion channel designed to suppress positrons based on an energy-loss technique is described. A source of beam channel momentum calibration from the decay pi+ --> e+ nu is also described.Comment: 5 page

    Precision Measurement of the π+→e+νe Branching Ratio in the PIENU Experiment

    Get PDF
    The PIENU experiment at TRIUMF aims to measure the branching ratio of the pion decay modes Rπ=[π+→e+νe(γ)]/[π+→μ+νμ(γ)] with precision of <0.1%. Precise measurement of Rπ provides a stringent test of electron-muon universality in weak interactions. The current status of the PIENU experiment and future prospects are presented
    corecore