774 research outputs found

    Observation of the Kohn anomaly near the K point of bilayer graphene

    Full text link
    The dispersion of electrons and phonons near the K point of bilayer graphene was investigated in a resonant Raman study using different laser excitation energies in the near infrared and visible range. The electronic structure was analyzed within the tight-binding approximation, and the Slonczewski-Weiss-McClure (SWM) parameters were obtained from the analysis of the dispersive behavior of the Raman features. A softening of the phonon branches was observed near the K point, and results evidence the Kohn anomaly and the importance of considering electron-phonon and electron-electron interactions to correctly describe the phonon dispersion in graphene systems.Comment: 4 pages, 4 figure

    Probing the Electronic Structure of Bilayer Graphene by Raman Scattering

    Full text link
    The electronic structure of bilayer graphene is investigated from a resonant Raman study using different laser excitation energies. The values of the parameters of the Slonczewski-Weiss-McClure model for graphite are measured experimentally and some of them differ significantly from those reported previously for graphite, specially that associated with the difference of the effective mass of electrons and holes. The splitting of the two TO phonon branches in bilayer graphene is also obtained from the experimental data. Our results have implications for bilayer graphene electronic devices.Comment: 4 pages, 4 figure

    Dynamically coupling system dynamics and SWAT+ models using Tinamït: application of modular tools for coupled human–water system models

    Get PDF
    Participatory water resource management requires modeling techniques that are accurate and flexible yet stakeholder-friendly. While different modeling frameworks offer advantages and disadvantages, system dynamics (SDs) models have seen sustained use as a stakeholder-friendly approach for participatory water resource modeling. Physically based models (e.g., SWAT+) have seen sustained use to model the hydrological components of water systems. Proposed as a way to combine the relative strengths of both modeling paradigms, model coupling allows researchers to, for example, build participatory SD models with stakeholders, while delegating the hydrological components of the overall model to an external hydrological model. Recently developed to facilitate model coupling, the Tinamït Python package presents an extensible, outward-facing application programming interface (API). It allows for the development of extensions (wrappers) that expand compatibility with different physically based models. However, no watershed hydrological model has yet been connected to this API. In the present study, a socket and JavaScript Object Notation (JSON)-based communication protocol was developed with the goal of facilitating the coupling of models written in languages such as Fortran. This novel protocol served to develop a Tinamït-compatible wrapper for the hydrological model SWAT+, allowing it to be coupled to human–water SD models. The novel coupling protocol was then applied to a case study of Tanzania's Usa river catchment. This approach provides the modeler with the benefits of both physically based and SD models, thereby allowing the detection of potentially far-reaching effects of policy-makers' decisions.</p

    Modulated Rashba interaction in a quantum wire: Spin and charge dynamics

    Full text link
    It was recently shown that a spatially modulated Rashba spin-orbit coupling in a quantum wire drives a transition from a metallic to an insulating state when the wave number of the modulation becomes commensurate with the Fermi wave length of the electrons in the wire. It was suggested that the effect may be put to practical use in a future spin transistor design. In the present article we revisit the problem and present a detailed analysis of the underlying physics. First, we explore how the build-up of charge density wave correlations in the quantum wire due to the periodic gate configuration that produces the Rashba modulation influences the transition to the insulating state. The interplay between the modulations of the charge density and that of the spin-orbit coupling turns out to be quite subtle: Depending on the relative phase between the two modulations, the joint action of the Rashba interaction and charge density wave correlations may either enhance or reduce the Rashba current blockade effect. Secondly, we inquire about the role of the Dresselhaus spin-orbit coupling that is generically present in a quantum wire embedded in semiconductor heterostructure. While the Dresselhaus coupling is found to work against the current blockade of the insulating state, the effect is small in most materials. Using an effective field theory approach, we also carry out an analysis of effects from electron- electron interactions, and show how the single-particle gap in the insulating state can be extracted from the more easily accessible collective charge and spin excitation thresholds. The smallness of the single-particle gap together with the anti-phase relation between the Rashba and chemical potential modulations pose serious difficulties for realizing a Rashba-controlled current switch in an InAs-based device. Some alternative designs are discussed.Comment: 20 pages, 6 figure

    Internal stresses in steel plate generated by shape memory alloy inserts

    Get PDF
    Neutron strain scanning was employed to investigate the internal stress fields in steel plate coupons with embedded prestrained superelastic NiTi shape memory alloy inserts. Strain fields in steel were evaluated at T = 21 °C and 130 °C on virgin coupons as well as on mechanically and thermally fatigued coupons. Internal stress fields were evaluated by direct calculation of principal stress components from the experimentally measured lattice strains as well as by employing an inverse finite element modeling approach. It is shown that if the NiTi inserts are embedded into the elastic steel matrix following a carefully designed technological procedure, the internal stress fields vary with temperature in a reproducible and predictable way. It is estimated that this mechanism of internal stress generation can be safely applied in the temperature range from −20 °C to 150 °C and is relatively resistant to thermal and mechanical fatigue. The predictability and fatigue endurance of the mechanism are of essential importance for the development of future smart metal matrix composites or smart structures with embedded shape memory alloy components

    Continuous-distribution puddle model for conduction in trilayer graphene

    Full text link
    An insulator-to-metal transition is observed in trilayer graphene based on the temperature dependence of the resistance under different applied gate voltages. At small gate voltages the resistance decreases with increasing temperature due to the increase in carrier concentration resulting from thermal excitation of electron-hole pairs. At large gate voltages excitation of electron-hole pairs is suppressed, and the resistance increases with increasing temperature because of the enhanced electron-phonon scattering. We find that the simple model with overlapping conduction and valence bands, each with quadratic dispersion relations, is unsatisfactory. Instead, we conclude that impurities in the substrate that create local puddles of higher electron or hole densities are responsible for the residual conductivity at low temperatures. The best fit is obtained using a continuous distribution of puddles. From the fit the average of the electron and hole effective masses can be determined.Comment: 18 pages, 5 figure

    Raman spectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2

    Full text link
    Raman spectra were measured for mono-, bi- and trilayer graphene grown on SiC by solid state graphitization, whereby the number of layers was pre-assigned by angle-resolved ultraviolet photoemission spectroscopy. It was found that the only unambiguous fingerprint in Raman spectroscopy to identify the number of layers for graphene on SiC(0001) is the linewidth of the 2D (or D*) peak. The Raman spectra of epitaxial graphene show significant differences as compared to micromechanically cleaved graphene obtained from highly oriented pyrolytic graphite crystals. The G peak is found to be blue-shifted. The 2D peak does not exhibit any obvious shoulder structures but it is much broader and almost resembles a single-peak even for multilayers. Flakes of epitaxial graphene were transferred from SiC onto SiO2 for further Raman studies. A comparison of the Raman data obtained for graphene on SiC with data for epitaxial graphene transferred to SiO2 reveals that the G peak blue-shift is clearly due to the SiC substrate. The broadened 2D peak however stems from the graphene structure itself and not from the substrate.Comment: 27 pages, 8 figure

    Tomographic capabilities of the new GEM based SXR diagnostic of WEST

    Get PDF
    International audienceThe tokamak WEST (Tungsten Environment in Steady-State Tokamak) will start operating by the end of 2016 as a test bed for the ITER divertor components in long pulse operation. In this context, radiative cooling of heavy impurities like tungsten (W) in the Soft X-ray (SXR) range [0.1 keV; 20 keV] is a critical issue for the plasma core performances. Thus reliable tools are required to monitor the local impurity density and avoid W accumulation. The WEST SXR diagnostic will be equipped with two new GEM (Gas Electron Multiplier) based poloidal cameras allowing to perform 2D tomographic reconstructions in tunable energy bands. In this paper tomographic capabilities of the Minimum Fisher Information (MFI) algorithm developed for Tore Supra and upgraded for WEST are investigated, in particular through a set of emissivity phantoms and the standard WEST scenario including reconstruction errors, influence of noise as well as computational time

    Structural correlations in heterogeneous electron transfer at monolayer and multilayer graphene electrodes

    Get PDF
    As a new form of carbon, graphene is attracting intense interest as an electrode material with widespread applications. In the present study, the heterogeneous electron transfer (ET) activity of graphene is investigated using scanning electrochemical cell microscopy (SECCM), which allows electrochemical currents to be mapped at high spatial resolution across a surface for correlation with the corresponding structure and properties of the graphene surface. We establish that the rate of heterogeneous ET at graphene increases systematically with the number of graphene layers, and show that the stacking in multilayers also has a subtle influence on ET kinetics. © 2012 American Chemical Society
    • …
    corecore