259 research outputs found

    Liquid Biopsy: A New Diagnostic Strategy and Not Only for Lung Cancer?

    Get PDF
    Targeted molecular therapies have significantly improved the therapeutic management of advanced lung cancer. The possibility of detecting lung cancer at an early stage is surely an important event in order to improve patient survival. Liquid biopsy has recently demonstrated its clinical utility in advanced non-small cell lung cancer (NSCLC) as a possible alternative to tissue biopsy for non-invasive evaluation of specific genomic alterations, thus providing prognostic and predictive information when the tissue is difficult to find or the material is not sufficient for the numerous investigations to be carried out. Several biosources from liquid biopsy, including free circulating tumor DNA (ctDNA) and RNA (ctRNA), circulating tumor cells (CTCs), exosomes and tumor-educated platelets (TEPs), have been extensively studied for their potential role in the diagnosis of lung cancer. This chapter proposes an overview of the circulating biomarkers assessed for the detention and monitoring of disease evolution with a particular focus on cell-free DNA, on the techniques developed to perform the evaluation and on the results of the most recent studies. The text will analyze in greater depth the liquid biopsy applied to the clinical practice of the management of NSCLC

    Next Generation Sequencing and Genetic Alterations in Squamous Cell Lung Carcinoma: Where Are We Today?

    Get PDF
    Lung cancer is the leading cause of cancer-related mortality and will affect ~6% of the population. It is divided into two broad categories, small cell lung cancer and non-small cell lung cancer (NSCLC), the latter representing 85% of all lung cancers. It mainly comprises adenocarcinoma (65%) and squamous cell carcinoma (30%) histologies. In recent years, there have been two major therapeutic advances in NSCLC. The first, immunotherapy, has greatly improved the prognosis of adenocarcinomas and squamous cell carcinomas. The second, the treatment of targetable driver mutations, has so far only benefited adenocarcinomas. Squamous cell carcinoma carries a high rate of mutations and is found mostly among smokers. This raises two important problems: identifying driver mutations and finding those of clinical relevance. Large-scale genomic analyses such as The Cancer Genome Atlas have allowed for the identification of frequent gene alterations, although their role and potential for targeted therapy remain unknown. The emergence of next generation sequencing has changed the landscape of precision medicine, in particular in lung cancer. In this review, we discuss the landscape of genetic alterations found in squamous cell lung cancer, the results of current targeted therapy trials, the difficulties in identifying and treating these alterations and how to integrate modern tools in clinical practice

    miR-155 is positively regulated by CBX7 in mouse embryonic fibroblasts and colon carcinomas, and targets the KRAS oncogene

    Get PDF
    Background: Loss of CBX7 expression has been described in several malignant neoplasias, including human colon and thyroid carcinomas proposing CBX7 as a tumor suppressor gene with a key role in cancer progression. This role is supported from the development of benign and malignant neoplasias in Cbx7 null mice. The aim of our work has been to investigate the mechanisms underlying the CBX7 oncosuppressor activity by analyzing the microRNAs (miRNAs) regulated by CBX7. Methods: The miRNA expression profiles of the mouse embryonic fibroblasts (MEFs) null for Cbx7 and the wild-type counterpart were analyzed by the miRNACHIP microarray and then validated by qRT-PCR. To asses KRAS as target of miR-155 we evaluated the protein levels after transfection of the synthetic miR-155. Human colon carcinoma samples have been investigated for the expression of CBX7 and miR-155. Results: Twenty miRNAs were found upregulated and nine, including miR-155, downregulated in cbx7-null MEFS in comparison with the wild-type ones. Then, we focused on miR-155 since several studies have shown its deregulated expression in several human malignancies and, moreover, was the most downregulated miRNA. Subsequently, we searched for miR-155 target genes demonstrating that KRAS protein levels are directly modulated by miR-155. A direct significant correlation (r = 0.6779) between CBX7 and miR-155 expression levels was found in a set of human colon carcinoma tissue samples. Conclusion: miR-155 is positively regulated by CBX7 in MEFs and colon carcinomas, and has KRAS as one of the target genes likely accounting for the anti-apoptotic activity ascribed to miR-155 in some tissue contexts

    EML4-ALK translocation identification in RNA exosomal cargo (ExoALK) in NSCLC patients: a novel role for liquid biopsy

    Get PDF
    The introduction of druggable targets has significantly improved the outcomes of non-small cell lung cancer patients (NSCLC). EML4-ALK translocation represents 4–6% of the druggable alterations in NSCLC. With the approval of Crizotinib, first discovered drug for the EML4-ALK translocation, on first line treatment for patients with detected mutation meant a complete change on the treatment landscape. The current standard method for EML4-ALK identification is immunohistochemistry or FISH in a tumor biopsy. However, a big number of NSCLC patients have not tissue available for analysis and others are not suitable for biopsy due to their physical condition or the location of the tumor. Liquid biopsy seems the best alternative for identification in these patients that have no tissue available. Circulating free RNA has not been validated for the identification of this mutation. As a complementary tool, exosomes might represent a good tool for predictive biomarkers study, and due to their stability, they preserve the genetic material contained in them. Our group has described for the first time the translocation EML4-ALK in RNA isolated from exosomes derived from NSCLC patients using next generation sequencing

    A simplified genomic profiling approach predicts outcome in metastatic colorectal cancer

    Get PDF
    The response of metastatic colorectal cancer (mCRC) to the first-line conventional combination therapy is highly variable, reflecting the elevated heterogeneity of the disease. The genetic alterations underlying this heterogeneity have been thoroughly characterized through omic approaches requiring elevated efforts and costs. In order to translate the knowledge of CRC molecular heterogeneity into a practical clinical approach, we utilized a simplified Next Generation Sequencing (NGS) based platform to screen a cohort of 77 patients treated with first-line conventional therapy. Samples were sequenced using a panel of hotspots and targeted regions of 22 genes commonly involved in CRC. This revealed 51 patients carrying actionable gene mutations, 22 of which carried druggable alterations. These mutations were frequently associated with additional genetic alterations. To take into account this molecular complexity and assisted by an unbiased bioinformatic analysis, we defined three subgroups of patients carrying distinct molecular patterns. We demonstrated these three molecular subgroups are associated with a different response to first-line conventional combination therapies. The best outcome was achieved in patients exclusively carrying mutations on TP53 and/or RAS genes. By contrast, in patients carrying mutations in any of the other genes, alone or associated with mutations of TP53/RAS, the expected response is much worse compared to patients with exclusive TP53/RAS mutations. Additionally, our data indicate that the standard approach has limited efficacy in patients without any mutations in the genes included in the panel. In conclusion, we identified a reliable and easy-to-use approach for a simplified molecular-based stratification of mCRC patients that predicts the efficacy of the first-line conventional combination therapy

    Benefits and Harms of Lung Cancer Screening by Chest Computed Tomography: A Systematic Review and Meta-Analysis

    Get PDF
    PURPOSE This meta-analysis aims to combine and analyze randomized clinical trials comparing computed tomography lung screening (CTLS) versus either no screening (NS) or chest x-ray (CXR) in subjects with cigarette smoking history, to provide a precise and reliable estimation of the benefits and harms associated with CTLS. MATERIALS AND METHODS Data from all published randomized trials comparing CTLS versus either NS or CXR in a highly tobacco-exposed population were collected, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Subgroup analyses by comparator (NS or CXR) were performed. Pooled risk ratio (RR) and relative 95% CIs were calculated for dichotomous outcomes. The certainty of the evidence was assessed using the GRADE approach. RESULTS Nine eligible trials (88,497 patients) were included. Pooled analysis showed that CTLS is associated with: a significant reduction of lung cancer-related mortality (overall RR, 0.87; 95% CI, 0.78 to 0.98; NS RR, 0.80; 95% CI, 0.69 to 0.92); a significant increase of early-stage tumors diagnosis (overall RR, 2.84; 95% CI 1.76 to 4.58; NS RR, 3.33; 95% CI, 2.27 to 4.89; CXR RR, 1.52; 95% CI, 1.04 to 2.23); a significant decrease of late-stage tumors diagnosis (overall RR, 0.75; 95% CI, 0.68 to 0.83; NS RR, 0.67; 95% CI, 0.56 to 0.80); a significant increase of resectability rate (NS RR, 2.57; 95% CI, 1.76 to 3.74); a nonsignificant reduction of all-cause mortality (overall RR, 0.99; 95% CI, 0.94 to 1.05); and a significant increase of overdiagnosis rate (NS, 38%; 95% CI, 14 to 63). The analysis of lung cancer-related mortality by sex revealed nonsignificant differences between men and women (P = .21; I-squared = 33.6%). CONCLUSION Despite there still being uncertainty about overdiagnosis estimate, this meta-analysis suggested that the CTLS benefits outweigh harms, in subjects with cigarette smoking history, ultimately supporting the systematic implementation of lung cancer screening worldwide

    Interpreting and integrating genomic tests results in clinical cancer care: Overview and practical guidance

    Get PDF
    The last decade has seen rapid progress in the use of genomic tests, including gene panels, whole‐exome sequencing, and whole‐genome sequencing, in research and clinical cancer care. These advances have created expansive opportunities to characterize the molecular attributes of cancer, revealing a subset of cancer‐associated aberrations called driver mutations. The identification of these driver mutations can unearth vulnerabilities of cancer cells to targeted therapeutics, which has led to the development and approval of novel diagnostics and personalized interventions in various malignancies. The applications of this modern approach, often referred to as precision oncology or precision cancer medicine, are already becoming a staple in cancer care and will expand exponentially over the coming years. Although genomic tests can lead to better outcomes by informing cancer risk, prognosis, and therapeutic selection, they remain underutilized in routine cancer care. A contributing factor is a lack of understanding of their clinical utility and the difficulty of results interpretation by the broad oncology community. Practical guidelines on how to interpret and integrate genomic information in the clinical setting, addressed to clinicians without expertise in cancer genomics, are currently limited. Building upon the genomic foundations of cancer and the concept of precision oncology, the authors have developed practical guidance to aid the interpretation of genomic test results that help inform clinical decision making for patients with cancer. They also discuss the challenges that prevent the wider implementation of precision oncology
    corecore