35 research outputs found

    Interactive models of communication at the nanoscale using nanoparticles that talk to one another

    Full text link
    [EN] 'Communication' between abiotic nanoscale chemical systems is an almost-unexplored field with enormous potential. Here we show the design and preparation of a chemical communication system based on enzyme-powered Janus nanoparticles, which mimics an interactive model of communication. Cargo delivery from one nanoparticle is governed by the biunivocal communication with another nanoparticle, which involves two enzymatic processes and the interchange of chemical messengers. The conceptual idea of establishing communication between nanodevices opens the opportunity to develop complex nanoscale systems capable of sharing information and cooperating.A. L.-L. is grateful to 'La Caixa' Banking Foundation for his PhD fellowship. We wish to thank the Spanish Government (MINECO Projects MAT2015-64139-C4-1, CTQ2014-58989-P and CTQ2015-71936-REDT and AGL2015-70235-C2-2-R) and the Generalitat Valenciana (Project PROMETEOII/2014/047) for support. The Comunidad de Madrid (S2013/MIT-3029, Programme NANOAVANSENS) is also gratefully acknowledged.Llopis-Lorente, A.; Díez, P.; Sánchez, A.; Marcos Martínez, MD.; Sancenón Galarza, F.; Martínez-Ruiz, P.; Villalonga, R.... (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications. 8:1-7. https://doi.org/10.1038/ncomms15511S178Tseng, R., Huang, J., Ouyang, J., Kaner, R. & Yang, Y. Polyaniline nanofiber/gold nanoparticle nonvolatile memory. Nano Lett. 5, 1077–1080 (2005).Liu, R. & Sen, A. Autonomous nanomotor based on copper-platinum segmented nanobattery. J. Am. Chem. Soc. 133, 20064–20067 (2011).Valov, I. et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013).Tarn, D. et al. Mesoporous silica nanoparticle nanocarriers: biofunctionality and biocompatibility. Acc. Chem. Res. 46, 792–801 (2013).Kline, T. & Paxton, W. Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem. Int. Ed. 117, 754–756 (2005).Akyildiz, I. F., Brunetti, F. & Blázquez, C. Nanonetworks: a new communication paradigm. Comput. Netw. 52, 2260–2279 (2008).Suda, T., Moore, M., Nakano, T., Egashira, R. & Enomoto, A. Exploratory research on molecular communication between nanomachines. Nat. Comput. 25, 1–30 (2005).Malak, D. & Akan, O. B. Molecular communication nanonetworks inside human body. Nano Commun. Netw. 3, 19–35 (2012).Akyildiz, I. F., Jornet, J. M. & Pierobon, M. Nanonetworks: a new frontier in communications. Commun. ACM 54, 84–89 (2011).Nakano, T., Moore, M. J., Wei, F., Vasilakos, A. V. & Shuai, J. Molecular communication and networking: opportunities and challenges. IEEE Trans. Nanobiosci. 11, 135–148 (2012).Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).Dickschat, J. S. Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27, 343–369 (2010).Kerényi, Á., Bihary, D., Venturi, V. & Pongor, S. Stability of multispecies bacterial communities: signaling networks may stabilize microbiomes. PLoS ONE 8, e57947 (2013).Gotti, C. & Clementi, F. Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol. 74, 363–396 (2004).Betke, K. M., Wells, C. A. & Hamm, H. E. GPCR mediated regulation of synaptic transmission. Prog. Neurobiol. 96, 304–321 (2012).Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).Benenson, Y. Biomolecular computing systems: principles, progress and potential. Nat. Rev. Genet. 13, 455–468 (2012).Ball, P. Chemistry meets computing. Nature 406, 118–120 (2000).de Silva, A. P. & McClenaghan, N. D. Molecular-Scale Logic Gates. Chem. Eur. J. 10, 574–586 (2004).Condon, A. Automata make antisense. Nature 429, 351–352 (2004).Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).Angelos, S., Yang, Y. W., Khashab, N. M., Stoddart, J. F. & Zink, J. I. Dual-controlled nanoparticles exhibiting AND logic. J. Am. Chem. Soc. 131, 11344–11346 (2009).Liu, H. et al. Dual-responsive surfaces modified with phenylboronic acid-containing polymer brush to reversibly capture and release cancer cells. J. Am. Chem. Soc. 135, 7603–7609 (2013).Lee, J. W. & Klajn, R. Dual-responsive nanoparticles that aggregate under the simultaneous action of light and CO2 . Chem. Commun. 51, 2036–2039 (2015).Liu, D. et al. Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew. Chem. Int. Ed. 50, 4103–4107 (2011).Chitode, J. S. Communication Theory Technical Publications (2010).Wood, J. T. Communication in Our Lives Wadsworth (2009).Guardado-Alvarez, T. M., Sudha Devi, L., Russell, M. M., Schwartz, B. J. & Zink, J. I. Activation of snap-top capped mesoporous silica nanocontainers using two near-infrared photons. J. Am. Chem. Soc. 135, 14000–14003 (2013).Baeza, A., Guisasola, E., Ruiz-Hernández, E. & Vallet-Regí, M. Magnetically triggered multidrug release by hybrid mesoporous silica nanoparticles. Chem. Mater. 24, 517–524 (2012).Zhang, Z. et al. Biocatalytic release of an anticancer drug from nucleic-acids-capped mesoporous SiO2 using DNA or molecular biomarkers as triggering stimuli. ACS Nano 7, 8455–8468 (2013).Tang, F., Li, L. & Chen, D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv. Mater. 24, 1504–1534 (2012).Li, Z., Barnes, J. C., Bosoy, A., Stoddart, J. F. & Zink, J. I. Mesoporous silica nanoparticles in biomedical applications. Chem. Soc. Rev. 41, 2590–2605 (2012).Coll, C., Bernardos, A., Martínez-Máñez, R. & Sancenón, F. Gated silica mesoporous supports for controlled release and signaling applications. Acc. Chem. Res. 46, 339–349 (2013).Aznar, E. et al. Gated materials for on-command release of guest molecules. Chem. Rev. 116, 561–718 (2016).Díez, P. et al. Toward the design of smart delivery systems controlled by integrated enzyme-based biocomputing ensembles. J. Am. Chem. Soc. 136, 9116–9123 (2014).Villalonga, R. et al. Enzyme-controlled sensing-actuating nanomachine based on Janus Au-mesoporous silica nanoparticles. Chem. Eur. J. 19, 7889–7894 (2013).Jerez, G., Kaufman, G., Prystai, M., Schenkeveld, S. & Donkor, K. K. Determination of thermodynamic pKa values of benzimidazole and benzimidazole derivatives by capillary electrophoresis. J. Sep. Sci. 32, 1087–1095 (2009).Sheffner, A. L. The reduction in vitro in viscosity of mucoprotein solutions by a new mucolytic agent, N-acetyl-L-cysteine. Ann. N. Y. Acad. Sci. 106, 298–310 (1963).Turkevich, J., Stevenson, P. C. & Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951).Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature 241, 20–22 (1973).Yousef, F. O., Zughul, M. B. & Badwan, A. A. The modes of complexation of benzimidazole with aqueous β-cyclodextrin explored by phase solubility, potentiometric titration, 1H-NMR and molecular modeling studies. J. Incl. Phenom. Macrocycl. Chem. 57, 519–523 (2007).Sánchez, A., Díez, P., Martínez-Ruíz, P., Villalonga, R. & Pingarrón, J. M. Janus Au-mesoporous silica nanoparticles as electrochemical biorecognition-signaling system. Electrochem. Commun. 30, 51–54 (2013).Akyildiz, I. F., Pierobon, M., Balasubramaniam, S. & Koucheryavy, Y. The internet of Bio-Nano things. IEEE Commun. Mag. 53, 32–40 (2015).Sancenón, F., Pascual, L., Oroval, M., Aznar, E. & Martínez-Máñez, R. Gated silica mesoporous materials in sensing applications. ChemistryOpen 4, 418–437 (2015).Akyildiz, I. & Jornet, J. The Internet of nano-things. IEEE Wirel. Commun. 17, 58–63 (2010).Giménez, C. et al. Towards chemical communication between gated nanoparticles. Angew. Chem. Int. Ed. 53, 12629–12633 (2014).Davis, B. G., Lloyd, R. C. & Jones, J. B. Controlled site-selective glycosylation of proteins by a combined site-directed mutagenesis and chemical modification approach. J. Org. Chem. 63, 9614–9615 (1998)

    Влияние фосфатных связующих на физико-механические свойства периклазохромитовых огнеупоров

    Get PDF
    У данній статті наведено та порівняно фізико-механічні властивості периклазо-хромітових матеріалів в залежності від різних типів фосфатних зв’язуючих та введення різних домішок. Визначено, що найбільш раціональним є введення триполіфосфату натрію.In given clause are resulted and the physycal-mechanical properties periclase-cgromite of materials are compared depending on different of types phosphate binding and introduction of the various additives. Is determined, that most rational is the introduction treepolyphosphate sodume

    Authors' reply

    No full text
    corecore