120 research outputs found

    Alloys of Pt and Rare Earths for the Oxygen Electroreduction Reaction

    Get PDF

    Inspiratory muscle training and its effect on indices of physiological and perceived stress during incremental walking exercise in normobaric hypoxia

    Get PDF
    This study evaluated the effects of inspiratory muscle training (IMT) on inspiratory muscle fatigue (IMF) and physiological and perceptual responses during trekking-specific exercise. An 8-week IMT program was completed by 21 males (age 32.4 ± 9.61 years, VO2peak 58.8 ± 6.75 mL/kg/min) randomised within matched pairs to either the IMT group (n = 11) or the placebo group [(P), n = 9]. Twice daily, participants completed 30 (IMT) or 60 (P) inspiratory efforts using a Powerbreathe initially set at a resistance of 50% (IMT) or used at 15% (P) of maximal inspiratory pressure (MIP) throughout. A loaded (12.5 kg) 39-minute incremental walking protocol (3–5 km/hour and 1–15% gradient) was completed in normobaric hypoxia (PIO2 = 110 mmHg, 3000 m) before and after training. MIP increased from 164 to 188 cmH2O (18%) and from 161 to 171 cmH2O (6%) in the IMT and P groups (P = 0.02). The 95% CI for IMT showed a significant improvement in MIP (5.21±43.33 cmH2O), but not for P. IMF during exercise (MIP) was*5%, showing no training effect for either IMT or P (P = 0.23). Rating of perceived exertion (RPE) was consistently reduced (*1) throughout exercise following training for IMT, but not for P (P = 0.03). The mean blood lactate concentration during exercise was significantly reduced by 0.26 and 0.15 mmol/L in IMT and P (P = 0.00), with no differences between groups (P = 0.34). Rating of dyspnoea during exercise decreased (*0.4) following IMT but increased (*0.3) following P (P = 0.01). IMT may attenuate the increased physiological and perceived exercise stress experienced during normobaric hypoxia, which may benefit moderate altitude expedition

    Sex and the single embryo: early deveopment in the Mediterranean fruit fly, Ceratitis capitata

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In embryos the maternal-to-zygotic transition (MTZ) integrates post-transcriptional regulation of maternal transcripts with transcriptional activation of the zygotic genome. Although the molecular mechanisms underlying this event are being clarified in <it>Drosophila melanogaster</it>, little is know about the embryogenic processes in other insect species. The recent publication of expressed sequence tags (ESTs) from embryos of the global pest species <it>Ceratitis capitata </it>(medfly) has enabled the investigation of embryogenesis in this species and has allowed a comparison of the embryogenic processes in these two related dipteran species, <it>C. capitata </it>and <it>D. melanogaster</it>, that shared a common ancestor 80-100 mya.</p> <p>Results</p> <p>Using a novel PCR-based sexing method, which takes advantage of a putative LTR retrotransposon MITE insertion on the medfly Y chromosome, the transcriptomes of individual early male and female embryos were analysed using RT-PCR. This study is focused on two crucial aspects of the onset of embryonic development: sex determination and cellular blastoderm formation. Together with the three known medfly genes (<it>Cctransformer</it>, <it>Cctransformer2 </it>and <it>Ccdoublesex</it>), the expression patterns of other medfly genes that are similar to the <it>D. melanogaster </it>sex-determination genes (<it>sisterlessA, groucho, deadpan, Sex-lethal, female lethal d, sans fille </it>and <it>intersex</it>) and four cellular blastoderm formation genes (<it>Rho1, spaghetti squash, slow-as-molasses </it>and <it>serendipity-α</it>) were analyzed, allowing us to sketch a preliminary outline of the embryonic process in the medfly. Furthermore, a putative homologue of the <it>Zelda </it>gene has been considered, which in <it>D. melanogaster </it>encodes a DNA-binding factor responsible for the maternal-to-zygotic transition.</p> <p>Conclusions</p> <p>Our novel sexing method facilitates the study of i) when the MTZ transition occurs in males and females of <it>C. capitata</it>, ii) when and how the maternal information of "female-development" is reprogrammed in the embryos and iii) similarities and differences in the regulation of gene expression in <it>C. capitata </it>and <it>D. melanogaster</it>. We suggest a new model for the onset of the sex determination cascade in the medfly: the maternally inherited <it>Cctra </it>transcripts in the female embryos are insufficient to produce enough active protein to inhibit the male mode of <it>Cctra </it>splicing. The slow rate of development and the inefficiency of the splicing mechanism in the pre-cellular blastoderm facilitates the male-determining factor (M) activity, which probably acts by inhibiting CcTRA protein activity.</p

    Sac enlargement due to seroma after endovascular abdominal aortic aneurysm repair with the Endologix PowerLink device

    Get PDF
    A patient who had undergone endovascular repair of an abdominal aortic aneurysm with the Endologix PowerLink bifurcated system presented with delayed aortic aneurysm enlargement due to assumed endotension. He was treated with aortic sac evacuation and wrapping of the endograft. This is the first report of endotension and aneurysm sac enlargement after implantation of the PowerLink endograft

    Press notice. EC agricultural price indices. Trends in EC agricultural price indices (output and input): 1st quarter 1985. 1985.3

    Get PDF
    The high precious metal loading and high overpotential of the oxygen evolution reaction (OER) prevents the widespread utilization of polymer electrolyte membrane (PEM) water electrolyzers. Herein we explore the OER activity and stability in acidic electrolyte of a combined IrO<sub><i>x</i></sub>/RuO<sub>2</sub> system consisting of RuO<sub>2</sub> thin films with submonolayer (1, 2, and 4 Å) amounts of IrO<sub><i>x</i></sub> deposited on top. Operando extended X-ray absorption fine structure (EXAFS) on the Ir L-3 edge revealed a rutile type IrO<sub>2</sub> structure with some Ir sites occupied by Ru, IrO<sub><i>x</i></sub> being at the surface of the RuO<sub>2</sub> thin film. We monitor corrosion on IrO<sub><i>x</i></sub>/RuO<sub>2</sub> thin films by combining electrochemical quartz crystal microbalance (EQCM) with inductively coupled mass spectrometry (ICP-MS). We elucidate the importance of submonolayer surface IrO<sub><i>x</i></sub> in minimizing Ru dissolution. Our work shows that we can tune the surface properties of active OER catalysts, such as RuO<sub>2</sub>, aiming to achieve higher electrocatalytic stability in PEM electrolyzers
    corecore