451 research outputs found

    Construction of an instant structured illumination microscope

    Get PDF
    A challenge in biological imaging is to capture high-resolution images at fast frame rates in live cells. The “instant structured illumination microscope” (iSIM) is a system designed for this purpose. Similarly to standard structured illumination microscopy (SIM), an iSIM provides a twofold improvement over widefield microscopy, in x, y and z, but also allows much faster image acquisition, with real-time display of super-resolution images. The assembly of an iSIM is reasonably complex, involving the combination and alignment of many optical components, including three micro-optics arrays (two lenslet arrays and an array of pinholes, all with a pitch of 222 μm) and a double-sided scanning mirror. In addition, a number of electronic components must be correctly controlled. Construction of the system is therefore not trivial, but is highly desirable, particularly for live-cell imaging. We report, and provide instructions for, the construction of an iSIM, including minor modifications to a previous design in both hardware and software. The final instrument allows us to rapidly acquire fluorescence images at rates faster than 100 fps, with approximately twofold improvement in resolution in both x-y and z; sub-diffractive biological features have an apparent size (full width at half maximum) of 145 nm (lateral) and 320 nm (axial), using a 1.49 NA objective and 488 nm excitation

    Neutron imaging with fission and thermal neutrons at NECTAR at MLZ

    Get PDF
    The instrument NECTAR is located at beam port SR10 of the neutron source FRM II at the Heinz Maier-Leibnitz Zentrum (MLZ). With a pair of moveable uranium plates placed in front of the entrance window of the beam tube, a fission neutron spectrum with a mean energy of 1.9 MeV can be used for neutron imaging applications. Via remote control these plates can be removed and a thermal neutron spectrum (mean energy at 28 meV) gets available for experiments. While the fission neutron spectrum is regularly used, some upgrades of the instrument are necessary to make the thermal neutron spectrum routinely available for user experiments. This includes additional equipment like a new sample stage and a second detector system foreseen to extend the capabilities of NECTAR. The current state of the instrumentation and necessary changes for the future thermal beam option and its usage for standard user experiments will be presented. First measurements were carried out with a temporary flight tube installed and a compact detector (510 mm × 180 mm x 180 mm) for thermal neutrons with a spatial resolution in the range of 100 μm. The feasibility of the thermal beam option could already be verified at an L/D ratio of 240 and a thermal neutron flux of 7.92·106 cm−2 s−1. The thermal neutron beam option adds a pure thermal neutron spectrum – Maxwell spectrum originating from the moderator without alteration by a secondary source or converter – to the energy ranges available for neutron imaging at MLZ instruments. It also offers a unique possibility to combine two quite different neutron energy ranges at a single instrument including their respective advantages. The thermal neutron beam option is funded by BMBF in the frame of research project 05K16VK3

    Absorption spectra of poly-N-vinylcarbazole derivatives by experiment and simulation

    Get PDF
    Geometry molecular optimization and quantum chemical simulations of absorption spectra for newly synthesized poly-N-vinylcarbazole derivatives were performed using a semi-empirical approach. The studied polymers were modified by changing the positions of the carbazole group with respect to the polymer backbone. The absorption spectra were calculated for different numbers of PNVK monomers. A sufficient agreement between the calculated and experimentally measured spectra was observed. A change of the red shift absorption with respect to the blue shift was observed for cases when the number of monomers was higher than 4. The theoretical simulations indicate that this behavior is a consequence of the specific molecular structure of the considered molecules. The results demonstrate the potential of combined simulation and experimental studies in materials engineering and searching of new electro-luminescent materials

    2-[Bis(5-chloro-2-pyridylamino)methyl]pyridine monohydrate

    Get PDF
    In the title compound, the dihedral angles between the 2-amino-5-chloro­pyridyl rings and the pyridine ring are 56.26 (6)° and 78.83 (5)°; the angle between the 2-amino-5-chloro­pyridyl rings is 72.42 (5)°. The solvent water mol­ecules are linked to the organic compound by N—H⋯O, O—H⋯O, N—H⋯N and O—H⋯N hydrogen bonds. π⋯π Stacking inter­actions are also observed between the 2-amino-5-chloro­pyridyl rings (centroid⋯centroid distance = 3.243 Å)

    Inhibition of the \u3cem\u3edapE\u3c/em\u3e-Encoded \u3cem\u3eN\u3c/em\u3e-Succinyl- ʟ, ʟ-diaminopimelic Acid Desuccinylase from \u3cem\u3eNeisseria meningitidis\u3c/em\u3e by ʟ-Captopril

    Get PDF
    Binding of the competitive inhibitor ʟ-captopril to the dapE-encoded N-succinyl-ʟ, ʟ-diaminopimelic acid desuccinylase from Neisseria meningitidis (NmDapE) was examined by kinetic, spectroscopic, and crystallographic methods. ʟ-Captopril, an angiotensin-converting enzyme (ACE) inhibitor, was previously shown to be a potent inhibitor of the DapE from Haemophilus influenzae (HiDapE) with an IC50 of 3.3 μM and a measured Ki of 1.8 μM and displayed a dose-responsive antibiotic activity toward Escherichia coli. ʟ-Captopril is also a competitive inhibitor of NmDapE with a Ki of 2.8 μM. To examine the nature of the interaction of ʟ-captopril with the dinuclear active site of DapE, we have obtained electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) data for the enzymatically hyperactive Co(II)-substituted forms of both HiDapE and NmDapE. EPR and MCD data indicate that the two Co(II) ions in DapE are antiferromagnetically coupled, yielding an S = 0 ground state, and suggest a thiolate bridge between the two metal ions. Verification of a thiolate-bridged dinuclear complex was obtained by determining the three-dimensional X-ray crystal structure of NmDapE in complex with ʟ-captopril at 1.8 Å resolution. Combination of these data provides new insights into binding of ʟ-captopril to the active site of DapE enzymes as well as important inhibitor–active site residue interaction’s. Such information is critical for the design of new, potent inhibitors of DapE enzymes

    Evaluation of the Influence of a Thioether Substituent on the Solid State and Solution Properties of N\u3csub\u3e3\u3c/sub\u3eS-ligated Copper(II) Complexes

    Get PDF
    Admixture of a N3S(thioether) ligand having two internal hydrogen bond donors (pbnpa: N-2-(phenylthio)ethyl-N,N-bis-((6-neopentylamino-2-pyridyl)methyl)amine; ebnpa: N-2-(ethylthio)ethyl-N,N-bis-((6-neopentylamino-2-pyridyl)methyl)amine) with equimolar amounts of Cu(ClO4)2·6H2O and NaX (X = Cl−, NCO−, or N3−) in CH3OH/H2O yielded the mononuclear Cu(II) derivatives [(pbnpa)Cu–Cl]ClO4 (1), [(ebnpa)Cu–Cl]ClO4 (2), [(pbnpa)Cu–NCO]ClO4 (3), [(ebnpa)Cu–NCO]ClO4 (4), [(pbnpa)Cu–N3]ClO4 (5), and [(ebnpa)Cu–N3]ClO4 (6). Each complex was characterized by FTIR, UV-VIS, EPR, and elemental analysis. Complexes 1, 2, 3 and 6 were characterized by X-ray crystallography. The structural studies revealed that [(pbnpa)Cu–X]ClO4 derivatives (1, 3) exhibit a distorted square pyramidal type geometry, whereas [(ebnpa)Cu–X]ClO4 complexes (2, 6) may be classified as distorted trigonal bipyramidal. EPR studies in CH3OH/CH3CN solution revealed that 1–6 exhibit an axial type spectrum with g∥ \u3e g⊥ \u3e 2.0 and A∥ = 15–17 mT, consistent with a square pyramidal based geometry for the Cu(II) center in each complex. A second species detected in the EPR spectra of 2 and 6 has a smaller A∥ value, consistent with greater spin delocalization on to sulfur, and likely results from geometric distortion of the [(ebnpa)Cu(II)–X]+ ions present in 2 and 6

    Accelerated creep in solid oxide fuel cell anode supports during reduction

    Get PDF
    To evaluate the reliability of solid oxide fuel cell (SOFC) stacks during operation, the stress field in the stack must be known. During operation the stress field will depend on time as creep processes relax stresses. The creep of reduced Ni-YSZ anode support at operating conditions has been studied previously. In this work a newly discovered creep phenomenon taking place during the reduction is reported. This relaxes stresses at a much higher rate (∼×104) than creep during operation. The phenomenon was studied both in three-point bending and uniaxial tension. Differences between the two measurements could be explained by newly observed stress promoted reduction. Finally, samples exposed to a small tensile stress (∼0.004 MPa) were observed to expand during reduction, which is in contradiction to previous literature. These observations suggest that release of internal residual stresses between the NiO and the YSZ phases occurs during reduction. The accelerated creep should practically eliminate any residual stress in the anode support in an SOFC stack, as has previously been indirectly observed. This phenomenon has to be taken into account both in the production of stacks and in the simulation of the stress field in a stack based on anode supported SOFCs
    corecore