Neutron imaging with fission and thermal neutrons at NECTAR at MLZ

Abstract

The instrument NECTAR is located at beam port SR10 of the neutron source FRM II at the Heinz Maier-Leibnitz Zentrum (MLZ). With a pair of moveable uranium plates placed in front of the entrance window of the beam tube, a fission neutron spectrum with a mean energy of 1.9 MeV can be used for neutron imaging applications. Via remote control these plates can be removed and a thermal neutron spectrum (mean energy at 28 meV) gets available for experiments. While the fission neutron spectrum is regularly used, some upgrades of the instrument are necessary to make the thermal neutron spectrum routinely available for user experiments. This includes additional equipment like a new sample stage and a second detector system foreseen to extend the capabilities of NECTAR. The current state of the instrumentation and necessary changes for the future thermal beam option and its usage for standard user experiments will be presented. First measurements were carried out with a temporary flight tube installed and a compact detector (510 mm × 180 mm x 180 mm) for thermal neutrons with a spatial resolution in the range of 100 μm. The feasibility of the thermal beam option could already be verified at an L/D ratio of 240 and a thermal neutron flux of 7.92·106 cm−2 s−1. The thermal neutron beam option adds a pure thermal neutron spectrum – Maxwell spectrum originating from the moderator without alteration by a secondary source or converter – to the energy ranges available for neutron imaging at MLZ instruments. It also offers a unique possibility to combine two quite different neutron energy ranges at a single instrument including their respective advantages. The thermal neutron beam option is funded by BMBF in the frame of research project 05K16VK3

    Similar works